Development and comparison of reversed-phase ultra high-performance liquid chromatography (RP-UHPLC) and hydrophilic interaction liquid chromatography (HILIC) approaches to the analysis of regioisomeric fluorofentanyl derivatives and related compounds
Jennifer K. Field , Benjamin S. Barrett , Erika Sitch , Ryan E. Mewis , William H. Campbell , Melvin R. Euerby , Oliver B. Sutcliffe
{"title":"Development and comparison of reversed-phase ultra high-performance liquid chromatography (RP-UHPLC) and hydrophilic interaction liquid chromatography (HILIC) approaches to the analysis of regioisomeric fluorofentanyl derivatives and related compounds","authors":"Jennifer K. Field , Benjamin S. Barrett , Erika Sitch , Ryan E. Mewis , William H. Campbell , Melvin R. Euerby , Oliver B. Sutcliffe","doi":"10.1016/j.forc.2025.100682","DOIUrl":null,"url":null,"abstract":"<div><div>This study describes the development and comparison of low, intermediate and high pH gradient RP-UHPLC-MS/MS with that of gradient HILIC-MS/MS analysis for a range of fluorofentanyl derivatives including four families of <em>ortho-</em>, <em>meta-</em> and <em>para</em>-regioisomers. High pH RP-UHPLC-MS/MS using an ammonium hydroxide and methanol gradient on a high pH stable SuperC18 column at low temperature was demonstrated to be the most successful chromatographic mode for separating 26 analytes including: regioisomeric fluorofentanyls (<em>n</em> = 10); fentanyl analogues (n = 10), despropionyl precursors (<em>n</em> = 4) and two commonly encountered related substances (heroin and xylazine). Low and intermediate pH RP-UHPLC failed to afford separation of many of the fluorofentanyl regioisomers on stationary phases possessing complementary selectivity with either acetonitrile or methanol over a wide temperature range. HILIC on a bare silica column using an acetonitrile and ammonium acetate / acetic acid gradient provided good separation of fluorofentanyl regiosiomers except for the despropionyl series. High pH gradient RP-UHPLC was demonstrated to provide orthogonal chromatographic selectivity to that of HILIC in the gradient analysis of 18 fentanyl and related substances. Seven isobaric fluorofentanyl structural isomers could be readily discriminated from the unique fragmentation ions obtained using positive electrospray ionization MS/MS. The optimum high pH RP-UHPLC chromatographic conditions for the separation of the fluorofentanyls was equally successful for the rapid separation of a wide range of fentanyl regio- and structural isomers.</div></div>","PeriodicalId":324,"journal":{"name":"Forensic Chemistry","volume":"45 ","pages":"Article 100682"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S246817092500044X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study describes the development and comparison of low, intermediate and high pH gradient RP-UHPLC-MS/MS with that of gradient HILIC-MS/MS analysis for a range of fluorofentanyl derivatives including four families of ortho-, meta- and para-regioisomers. High pH RP-UHPLC-MS/MS using an ammonium hydroxide and methanol gradient on a high pH stable SuperC18 column at low temperature was demonstrated to be the most successful chromatographic mode for separating 26 analytes including: regioisomeric fluorofentanyls (n = 10); fentanyl analogues (n = 10), despropionyl precursors (n = 4) and two commonly encountered related substances (heroin and xylazine). Low and intermediate pH RP-UHPLC failed to afford separation of many of the fluorofentanyl regioisomers on stationary phases possessing complementary selectivity with either acetonitrile or methanol over a wide temperature range. HILIC on a bare silica column using an acetonitrile and ammonium acetate / acetic acid gradient provided good separation of fluorofentanyl regiosiomers except for the despropionyl series. High pH gradient RP-UHPLC was demonstrated to provide orthogonal chromatographic selectivity to that of HILIC in the gradient analysis of 18 fentanyl and related substances. Seven isobaric fluorofentanyl structural isomers could be readily discriminated from the unique fragmentation ions obtained using positive electrospray ionization MS/MS. The optimum high pH RP-UHPLC chromatographic conditions for the separation of the fluorofentanyls was equally successful for the rapid separation of a wide range of fentanyl regio- and structural isomers.
期刊介绍:
Forensic Chemistry publishes high quality manuscripts focusing on the theory, research and application of any chemical science to forensic analysis. The scope of the journal includes fundamental advancements that result in a better understanding of the evidentiary significance derived from the physical and chemical analysis of materials. The scope of Forensic Chemistry will also include the application and or development of any molecular and atomic spectrochemical technique, electrochemical techniques, sensors, surface characterization techniques, mass spectrometry, nuclear magnetic resonance, chemometrics and statistics, and separation sciences (e.g. chromatography) that provide insight into the forensic analysis of materials. Evidential topics of interest to the journal include, but are not limited to, fingerprint analysis, drug analysis, ignitable liquid residue analysis, explosives detection and analysis, the characterization and comparison of trace evidence (glass, fibers, paints and polymers, tapes, soils and other materials), ink and paper analysis, gunshot residue analysis, synthetic pathways for drugs, toxicology and the analysis and chemistry associated with the components of fingermarks. The journal is particularly interested in receiving manuscripts that report advances in the forensic interpretation of chemical evidence. Technology Readiness Level: When submitting an article to Forensic Chemistry, all authors will be asked to self-assign a Technology Readiness Level (TRL) to their article. The purpose of the TRL system is to help readers understand the level of maturity of an idea or method, to help track the evolution of readiness of a given technique or method, and to help filter published articles by the expected ease of implementation in an operation setting within a crime lab.