Dynamic multi-objective optimization using historical evolutionary learning with global alignment local descriptor matching and collaborative guidance

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kaiquan Guan , Haibin Ouyang , Steven Li , Gaige Wang , Nagwan Abdel Samee , Essam H. Houssein
{"title":"Dynamic multi-objective optimization using historical evolutionary learning with global alignment local descriptor matching and collaborative guidance","authors":"Kaiquan Guan ,&nbsp;Haibin Ouyang ,&nbsp;Steven Li ,&nbsp;Gaige Wang ,&nbsp;Nagwan Abdel Samee ,&nbsp;Essam H. Houssein","doi":"10.1016/j.eswa.2025.128915","DOIUrl":null,"url":null,"abstract":"<div><div>Dynamic multi-objective optimization problems involve conflicting objectives that evolve over time, necessitating algorithms capable of efficiently tracking the dynamic Pareto optimal set and preserving solution diversity. To address this, the paper proposes a framework for dynamic multi-objective optimization algorithms based on Historical Evolutionary Learning (EHEL). The framework employs four strategies: using global alignment and local descriptor matching to improve the accuracy of historical individual searches; adopting a multi-history experience collaborative guidance strategy to integrate historical information and enhance the reliability of evolutionary direction; introducing a dynamic quadratic correction strategy to revise less-potential solutions; and proposing a shrinking boundary strategy to preserve directional information and enhance boundary exploration capability. Experiments on the CEC 2018 benchmark test set show that EHEL exhibits superior optimization capabilities across various dynamic environments, significantly enhancing convergence diversity and solution quality compared to existing algorithms. This research provides a robust and adaptive solution strategy for dynamic multi-objective optimization by effectively integrating historical experience with adaptive mechanisms.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"296 ","pages":"Article 128915"},"PeriodicalIF":7.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417425025321","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic multi-objective optimization problems involve conflicting objectives that evolve over time, necessitating algorithms capable of efficiently tracking the dynamic Pareto optimal set and preserving solution diversity. To address this, the paper proposes a framework for dynamic multi-objective optimization algorithms based on Historical Evolutionary Learning (EHEL). The framework employs four strategies: using global alignment and local descriptor matching to improve the accuracy of historical individual searches; adopting a multi-history experience collaborative guidance strategy to integrate historical information and enhance the reliability of evolutionary direction; introducing a dynamic quadratic correction strategy to revise less-potential solutions; and proposing a shrinking boundary strategy to preserve directional information and enhance boundary exploration capability. Experiments on the CEC 2018 benchmark test set show that EHEL exhibits superior optimization capabilities across various dynamic environments, significantly enhancing convergence diversity and solution quality compared to existing algorithms. This research provides a robust and adaptive solution strategy for dynamic multi-objective optimization by effectively integrating historical experience with adaptive mechanisms.
基于全局对齐、局部描述子匹配和协同制导的历史进化学习动态多目标优化
动态多目标优化问题涉及随着时间推移而演变的冲突目标,需要能够有效跟踪动态Pareto最优集并保持解多样性的算法。针对这一问题,本文提出了一种基于历史进化学习的动态多目标优化算法框架。该框架采用了四种策略:使用全局对齐和局部描述符匹配来提高历史个体搜索的准确性;采用多历史经验协同制导策略,整合历史信息,提高进化方向的可靠性;引入动态二次修正策略对低势解进行修正;提出了一种缩小边界的策略,以保留方向信息,提高边界勘探能力。在CEC 2018基准测试集上的实验表明,与现有算法相比,EHEL在各种动态环境下表现出卓越的优化能力,显著提高了收敛多样性和求解质量。该研究通过将历史经验与自适应机制有效结合,为动态多目标优化提供了鲁棒性和自适应的求解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信