{"title":"Deep Link Strength Prediction: Leveraging line graph transformations and neural networks","authors":"Zhixin Ming , Jie Li , Jing Wang","doi":"10.1016/j.jocs.2025.102661","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting link strengths in complex networks is a fundamental challenge, crucial for understanding network dynamics and optimizing real-world applications. Traditional approaches often rely on shallow structural features, limiting their ability to model intricate dependencies. To address these limitations, we propose Deep Link Strength Prediction (DLSP), a novel framework that integrates line graph transformations with graph convolutional networks (GCNs) to enhance the predictive capability of link weight estimation. DLSP redefines the task by transforming edge-centric information into node-level representations, facilitating effective learning of complex structural patterns. DLSP follows a multi-phase approach: first, a localized subgraph around the target link is extracted and encoded using a weighted node labeling scheme, preserving local structural and attribute-driven properties. Next, the labeled subgraph undergoes a line graph transformation, mapping link dependencies into node representations, thereby enabling a structured embedding space. A GCN is then employed to extract rich hierarchical representations, capturing both micro and macro-level graph structures. Finally, these learned embeddings are passed through a dense neural network to estimate the target link strength, framing the problem as a continuous-valued regression task. Unlike existing methods that rely on handcrafted features or isolated node embeddings, DLSP explicitly models link dependencies through graph-aware transformations, leading to superior predictive performance. Extensive experiments conducted on six diverse network datasets demonstrate that DLSP consistently outperforms state-of-the-art methods, showcasing its robustness, scalability, and potential for real-world applications.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"91 ","pages":"Article 102661"},"PeriodicalIF":3.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325001383","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting link strengths in complex networks is a fundamental challenge, crucial for understanding network dynamics and optimizing real-world applications. Traditional approaches often rely on shallow structural features, limiting their ability to model intricate dependencies. To address these limitations, we propose Deep Link Strength Prediction (DLSP), a novel framework that integrates line graph transformations with graph convolutional networks (GCNs) to enhance the predictive capability of link weight estimation. DLSP redefines the task by transforming edge-centric information into node-level representations, facilitating effective learning of complex structural patterns. DLSP follows a multi-phase approach: first, a localized subgraph around the target link is extracted and encoded using a weighted node labeling scheme, preserving local structural and attribute-driven properties. Next, the labeled subgraph undergoes a line graph transformation, mapping link dependencies into node representations, thereby enabling a structured embedding space. A GCN is then employed to extract rich hierarchical representations, capturing both micro and macro-level graph structures. Finally, these learned embeddings are passed through a dense neural network to estimate the target link strength, framing the problem as a continuous-valued regression task. Unlike existing methods that rely on handcrafted features or isolated node embeddings, DLSP explicitly models link dependencies through graph-aware transformations, leading to superior predictive performance. Extensive experiments conducted on six diverse network datasets demonstrate that DLSP consistently outperforms state-of-the-art methods, showcasing its robustness, scalability, and potential for real-world applications.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).