{"title":"Constraining exponential f(Q) gravity with cosmic chronometers and Supernovae: A data-driven analysis","authors":"Sanjeeda Sultana, Surajit Chattopadhyay","doi":"10.1016/j.jheap.2025.100422","DOIUrl":null,"url":null,"abstract":"<div><div>The current paper reports an investigation of the cosmological implications of symmetric teleparallel gravity within a modified <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> theory. We construct a specific exponential <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> model as <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo><mo>=</mo><mi>Q</mi><mo>+</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub><msqrt><mrow><mi>Q</mi><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msqrt></mrow></msup><mo>)</mo></math></span>, designed to smoothly deviate from General Relativity and accommodate both early-time inflation and late-time accelerated expansion. By employing Markov Chain Monte Carlo (MCMC) methods, we constrain the model parameters <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>η</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, and <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><msub><mrow><mi>m</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> using a combination of cosmic chronometers (CC), Pantheon, and Pantheon<sup>+</sup> Supernovae datasets. Our analysis demonstrates that the model consistently supports a late-time acceleration scenario and is in good agreement with current cosmological observations. We extensively analyze the dynamical behavior of the model using key cosmological diagnostics, including the deceleration parameter, equation of state, energy density parameters, Statefinder, and Om diagnostics. The reconstructed Hubble parameter <span><math><mi>H</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> and distance modulus <span><math><mi>μ</mi><mo>(</mo><mi>z</mi><mo>)</mo></math></span> show strong consistency with ΛCDM and observational data, while subtle deviations at higher redshifts highlight the value of multi-probe observations. In addition, the examination of energy conditions shows that, in accordance with cosmic acceleration, the Strong Energy Condition (SEC) is broken at lower redshifts while the Dominant Energy Condition (DEC) and Null Energy Condition (NEC) are satisfied. Cosmic age estimates from the model are consistently in agreement with Planck constraints. Our results indicate the viability of exponential <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity providing a consistent framework for exploring cosmic evolution and highlighting the significance of multi-probe cosmological measurements for further developments. A comparative statistical analysis reveals that while ΛCDM remains statistically preferred based on AIC and BIC criteria, the exponential <span><math><mi>f</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> model yields comparable fits and remains a theoretically motivated and viable alternative for describing cosmic acceleration.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"48 ","pages":"Article 100422"},"PeriodicalIF":10.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221440482500103X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The current paper reports an investigation of the cosmological implications of symmetric teleparallel gravity within a modified theory. We construct a specific exponential model as , designed to smoothly deviate from General Relativity and accommodate both early-time inflation and late-time accelerated expansion. By employing Markov Chain Monte Carlo (MCMC) methods, we constrain the model parameters , , , and using a combination of cosmic chronometers (CC), Pantheon, and Pantheon+ Supernovae datasets. Our analysis demonstrates that the model consistently supports a late-time acceleration scenario and is in good agreement with current cosmological observations. We extensively analyze the dynamical behavior of the model using key cosmological diagnostics, including the deceleration parameter, equation of state, energy density parameters, Statefinder, and Om diagnostics. The reconstructed Hubble parameter and distance modulus show strong consistency with ΛCDM and observational data, while subtle deviations at higher redshifts highlight the value of multi-probe observations. In addition, the examination of energy conditions shows that, in accordance with cosmic acceleration, the Strong Energy Condition (SEC) is broken at lower redshifts while the Dominant Energy Condition (DEC) and Null Energy Condition (NEC) are satisfied. Cosmic age estimates from the model are consistently in agreement with Planck constraints. Our results indicate the viability of exponential gravity providing a consistent framework for exploring cosmic evolution and highlighting the significance of multi-probe cosmological measurements for further developments. A comparative statistical analysis reveals that while ΛCDM remains statistically preferred based on AIC and BIC criteria, the exponential model yields comparable fits and remains a theoretically motivated and viable alternative for describing cosmic acceleration.
本文报告了在修正的f(Q)理论中对对称遥平行引力的宇宙学含义的研究。我们构建了一个特定的指数f(Q)模型,即f(Q)=Q+η1Q0(1 - e- η2Q/Q0),旨在平滑地偏离广义相对论,并适应早期暴胀和后期加速膨胀。采用Markov Chain Monte Carlo (MCMC)方法,结合宇宙天文钟(CC)、Pantheon和Pantheon+超新星数据集,对模型参数η1、η2、H0和Ωm0进行了约束。我们的分析表明,该模型始终支持晚时间加速情景,并且与当前的宇宙学观测结果非常吻合。我们使用关键的宇宙学诊断,包括减速参数、状态方程、能量密度参数、状态查找器和Om诊断,广泛地分析了模型的动力学行为。重建的哈勃参数H(z)和距离模量μ(z)与ΛCDM和观测数据具有较强的一致性,而在高红移处的细微偏差突出了多探头观测的价值。此外,对能量条件的检验表明,与宇宙加速度相一致,强能量条件(SEC)在低红移处被打破,而优势能量条件(DEC)和零能量条件(NEC)得到满足。该模型对宇宙年龄的估计始终符合普朗克约束条件。我们的研究结果表明,指数f(Q)引力的可行性为探索宇宙演化提供了一致的框架,并突出了多探测器宇宙学测量对进一步发展的重要性。一项比较统计分析显示,虽然基于AIC和BIC标准,ΛCDM在统计上仍然是首选,但指数f(Q)模型产生了可比的拟合,并且仍然是描述宇宙加速的理论动机和可行的替代方案。
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.