Yunfei Zhang , Jun Shen , Jian Li , Mingzhe Yu , Xu Chen , Ziyong Yin
{"title":"Achieving high precision and balanced multi-energy load forecasting with mixed time scales: a multi-task learning model with stacked cross-attention","authors":"Yunfei Zhang , Jun Shen , Jian Li , Mingzhe Yu , Xu Chen , Ziyong Yin","doi":"10.1016/j.egyai.2025.100561","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate multi-energy load forecasting is a prerequisite for on-demand energy supply in integrated energy systems. However, due to differences in response characteristics and load patterns among electrical, heating, and cooling loads, multi-energy load forecasting faces the challenges of heterogeneous time scales and imbalanced forecasting accuracy across load types. To address these challenges, this paper proposes a multi-task learning model with stacked cross-attention. This model incorporates a time scale alignment module to align the time scales of different loads, and employs Informer encoders as experts to extract load-specific features. Stacked cross-attention as the soft sharing mechanism dynamically fuses expert features at the sequence level, enhancing inter-task collaboration and adaptability. This design improves the overall accuracy of multi-energy load forecasting with mixed time scales while reducing forecasting imbalance across load types. Comparison results demonstrate that the model with the stacked cross-attention achieves the best forecasting performance and lowers the imbalance index by 79.17 %. Furthermore, the experts based on Informer encoders yield over a 30.09 % MAPE reduction compared to alternative expert architectures. Compared to the multi-gate mixture-of-experts based models, classical forecasting models, and recent advanced models, the proposed model achieves superior forecasting accuracy, validating its effectiveness and advancement.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"21 ","pages":"Article 100561"},"PeriodicalIF":9.6000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654682500093X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate multi-energy load forecasting is a prerequisite for on-demand energy supply in integrated energy systems. However, due to differences in response characteristics and load patterns among electrical, heating, and cooling loads, multi-energy load forecasting faces the challenges of heterogeneous time scales and imbalanced forecasting accuracy across load types. To address these challenges, this paper proposes a multi-task learning model with stacked cross-attention. This model incorporates a time scale alignment module to align the time scales of different loads, and employs Informer encoders as experts to extract load-specific features. Stacked cross-attention as the soft sharing mechanism dynamically fuses expert features at the sequence level, enhancing inter-task collaboration and adaptability. This design improves the overall accuracy of multi-energy load forecasting with mixed time scales while reducing forecasting imbalance across load types. Comparison results demonstrate that the model with the stacked cross-attention achieves the best forecasting performance and lowers the imbalance index by 79.17 %. Furthermore, the experts based on Informer encoders yield over a 30.09 % MAPE reduction compared to alternative expert architectures. Compared to the multi-gate mixture-of-experts based models, classical forecasting models, and recent advanced models, the proposed model achieves superior forecasting accuracy, validating its effectiveness and advancement.