{"title":"Analyzing the manufacturing phases of alumina-based porcelain insulators","authors":"Ayşegül Gültekin Toroslu","doi":"10.1016/j.bsecv.2025.100456","DOIUrl":null,"url":null,"abstract":"<div><div>Alumina-based insulators are widely used in regions with extreme temperature fluctuations, such as polar areas, due to their high mechanical strength, low thermal expansion, and excellent electrical insulation properties. To improve the reliability of electrical transmission lines in such environments, a detailed understanding of their structural and physical characteristics is needed. This study investigates the mechanical and microstructural properties of high-strength alumina-based insulators using X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDAX). The manufacturing process is analyzed, focusing on density, porosity, and phase structure validation. The results show that increased mullite formation within the insulator structure improves mechanical strength, especially with low porosity (10.8%), having homogeneous size distribution and high density (2.73<!--> <!-->g/cm<sup>3</sup>). Strength tests indicate that the produced insulators resist forces up to 14<!--> <!-->kN. Among the samples, those produced using alumina powder show better mechanical strength and reliability, likely due to more controlled mullite formation and reduced impurity content. As a result, an improved production process for reliable alumina-based C12.5-650 insulators was produced. These findings provide valuable insights for significantly improving the production of alumina-based insulators for harsh environments.</div></div>","PeriodicalId":56330,"journal":{"name":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","volume":"64 5","pages":"Article 100456"},"PeriodicalIF":2.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boletin de la Sociedad Espanola de Ceramica y Vidrio","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0366317525000421","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Alumina-based insulators are widely used in regions with extreme temperature fluctuations, such as polar areas, due to their high mechanical strength, low thermal expansion, and excellent electrical insulation properties. To improve the reliability of electrical transmission lines in such environments, a detailed understanding of their structural and physical characteristics is needed. This study investigates the mechanical and microstructural properties of high-strength alumina-based insulators using X-ray diffraction (XRD) and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDAX). The manufacturing process is analyzed, focusing on density, porosity, and phase structure validation. The results show that increased mullite formation within the insulator structure improves mechanical strength, especially with low porosity (10.8%), having homogeneous size distribution and high density (2.73 g/cm3). Strength tests indicate that the produced insulators resist forces up to 14 kN. Among the samples, those produced using alumina powder show better mechanical strength and reliability, likely due to more controlled mullite formation and reduced impurity content. As a result, an improved production process for reliable alumina-based C12.5-650 insulators was produced. These findings provide valuable insights for significantly improving the production of alumina-based insulators for harsh environments.
期刊介绍:
The Journal of the Spanish Ceramic and Glass Society publishes scientific articles and communications describing original research and reviews relating to ceramic materials and glasses. The main interests are on novel generic science and technology establishing the relationships between synthesis, processing microstructure and properties of materials. Papers may deal with ceramics and glasses included in any of the conventional categories: structural, functional, traditional, composites and cultural heritage. The main objective of the Journal of the Spanish Ceramic and Glass Society is to sustain a high standard research quality by means of appropriate reviewing procedures.