{"title":"Edge–cloud collaborative predictive auto-scaling for industrial IoT: A multi-objective optimization approach considering equipment health status","authors":"Chunmao Jiang , Wei Wu , Tengfei Fan , Wendi Jiang","doi":"10.1016/j.cie.2025.111365","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an innovative edge–cloud collaborative predictive auto-scaling framework for Industrial Internet of Things (IIoT) environments, specifically addressing resource management challenges in equipment health monitoring and predictive maintenance scenarios. Traditional autoscaling approaches often fail to consider the equipment’s health status and its impact on resource demands, leading to suboptimal resource allocation and potential equipment risks. We propose a three-tier framework that integrates equipment health monitoring, workload prediction, and multi-objective optimization. First, we develop a novel deep learning-based workload prediction model incorporating equipment degradation indicators to accurately forecast resource demands. Second, we formulate a multi-objective optimization problem that simultaneously considers resource utilization, energy consumption, and equipment health risk. Third, we design an adaptive edge–cloud collaboration mechanism that dynamically adjusts resource allocation based on immediate equipment health status and predicted maintenance requirements. Through extensive experiments using real-world data from multiple manufacturing facilities, our approach demonstrates significant improvements over the baseline methods: 25% reduction in energy consumption, 30% increase in resource utilization, and 20% decrease in equipment health risk (<span><math><mrow><mi>p</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>05</mn></mrow></math></span>). Furthermore, the framework shows robust performance under various industrial scenarios, including sudden equipment degradation and maintenance events. These results validate the effectiveness of our approach in managing IIoT resources while maintaining equipment reliability.</div></div>","PeriodicalId":55220,"journal":{"name":"Computers & Industrial Engineering","volume":"208 ","pages":"Article 111365"},"PeriodicalIF":6.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Industrial Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036083522500511X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an innovative edge–cloud collaborative predictive auto-scaling framework for Industrial Internet of Things (IIoT) environments, specifically addressing resource management challenges in equipment health monitoring and predictive maintenance scenarios. Traditional autoscaling approaches often fail to consider the equipment’s health status and its impact on resource demands, leading to suboptimal resource allocation and potential equipment risks. We propose a three-tier framework that integrates equipment health monitoring, workload prediction, and multi-objective optimization. First, we develop a novel deep learning-based workload prediction model incorporating equipment degradation indicators to accurately forecast resource demands. Second, we formulate a multi-objective optimization problem that simultaneously considers resource utilization, energy consumption, and equipment health risk. Third, we design an adaptive edge–cloud collaboration mechanism that dynamically adjusts resource allocation based on immediate equipment health status and predicted maintenance requirements. Through extensive experiments using real-world data from multiple manufacturing facilities, our approach demonstrates significant improvements over the baseline methods: 25% reduction in energy consumption, 30% increase in resource utilization, and 20% decrease in equipment health risk (). Furthermore, the framework shows robust performance under various industrial scenarios, including sudden equipment degradation and maintenance events. These results validate the effectiveness of our approach in managing IIoT resources while maintaining equipment reliability.
期刊介绍:
Computers & Industrial Engineering (CAIE) is dedicated to researchers, educators, and practitioners in industrial engineering and related fields. Pioneering the integration of computers in research, education, and practice, industrial engineering has evolved to make computers and electronic communication integral to its domain. CAIE publishes original contributions focusing on the development of novel computerized methodologies to address industrial engineering problems. It also highlights the applications of these methodologies to issues within the broader industrial engineering and associated communities. The journal actively encourages submissions that push the boundaries of fundamental theories and concepts in industrial engineering techniques.