{"title":"Convolution Quadrature for the Quasilinear Subdiffusion Equation","authors":"Maria López-Fernández, Łukasz Płociniczak","doi":"10.1137/23m161450x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1482-1511, August 2025. <br/> Abstract. We construct a convolution quadrature (CQ) scheme for the quasilinear subdiffusion equation of order [math] and supply it with the fast and oblivious implementation. In particular, we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the finite element method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. Our estimates are globally optimal for all [math] and pointwise for [math] in the sense that they reduce to the well-known results for the linear equation. For the semilinear case, our estimates are optimal both globally and locally. As a passing result, we also obtain a discrete Grönwall inequality for the CQ, which is a crucial ingredient in our convergence proof based on the energy method. The paper concludes with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m161450x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 4, Page 1482-1511, August 2025. Abstract. We construct a convolution quadrature (CQ) scheme for the quasilinear subdiffusion equation of order [math] and supply it with the fast and oblivious implementation. In particular, we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the finite element method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. Our estimates are globally optimal for all [math] and pointwise for [math] in the sense that they reduce to the well-known results for the linear equation. For the semilinear case, our estimates are optimal both globally and locally. As a passing result, we also obtain a discrete Grönwall inequality for the CQ, which is a crucial ingredient in our convergence proof based on the energy method. The paper concludes with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.