Machine Learning and Deep Learning Techniques to Detect Mental Stress Using Various Physiological Signals: A Critical Insight

Megha Khandelwal, Arun Sharma
{"title":"Machine Learning and Deep Learning Techniques to Detect Mental Stress Using Various Physiological Signals: A Critical Insight","authors":"Megha Khandelwal, Arun Sharma","doi":"10.1002/widm.70035","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive review on the various techniques and methodologies employed to detect stress among individuals. The review encompasses a broad spectrum of methods, including physiological measurements, wearable technology, machine learning and deep learning algorithms, and contactless image‐based techniques. The paper outlines the physiological markers commonly associated with stress, such as Electrocardiogram (ECG), Electroencephalography (EEG), Photoplethysmography (PPG), and Skin Galvanic response. It examines the various wearable and contactless techniques to acquire data. Furthermore, it explores the integration of machine learning and deep learning techniques for the development of predictive stress detection models, highlighting their accuracy. It also addresses the potential of multispectral and hyperspectral imaging in this area. Some of the publicly available datasets are also discussed in this paper.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Application Areas &gt; Health Care</jats:list-item> <jats:list-item>Technologies &gt; Machine Learning</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a comprehensive review on the various techniques and methodologies employed to detect stress among individuals. The review encompasses a broad spectrum of methods, including physiological measurements, wearable technology, machine learning and deep learning algorithms, and contactless image‐based techniques. The paper outlines the physiological markers commonly associated with stress, such as Electrocardiogram (ECG), Electroencephalography (EEG), Photoplethysmography (PPG), and Skin Galvanic response. It examines the various wearable and contactless techniques to acquire data. Furthermore, it explores the integration of machine learning and deep learning techniques for the development of predictive stress detection models, highlighting their accuracy. It also addresses the potential of multispectral and hyperspectral imaging in this area. Some of the publicly available datasets are also discussed in this paper.This article is categorized under: Application Areas > Health Care Technologies > Machine Learning
利用各种生理信号检测精神压力的机器学习和深度学习技术:一个关键的见解
本文提出了对各种技术和方法的全面审查,用于检测个人之间的压力。该综述涵盖了广泛的方法,包括生理测量、可穿戴技术、机器学习和深度学习算法,以及基于非接触式图像的技术。本文概述了通常与应激相关的生理指标,如心电图(ECG)、脑电图(EEG)、光容积脉搏波(PPG)和皮肤电反应。它检查了各种可穿戴和非接触式技术来获取数据。此外,它还探讨了机器学习和深度学习技术的集成,以开发预测应力检测模型,突出其准确性。它还讨论了多光谱和高光谱成像在该领域的潜力。本文还讨论了一些公开可用的数据集。本文分类如下:应用领域>;医疗保健技术;机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信