{"title":"Targeting complement C3/C3aR pathway restores rejuvenation factor PF4 and mitigates neurocognitive impairments in age-related perioperative neurocognitive disorders","authors":"Jia-Li Wang, Cai-Hong Ye, Zhong-Fa Teng, Kai Zhou, Li-Li Pan, Man-Duo Ouyan, Zhi Zheng, Meng Lu, Shi-Lei Li, Jing Zhang, Pei-Chan Zheng, Jingjing Zhang, Hui Zhang, Mei-Hong Lin, Liang-Cheng Zhang, Shi-Shi Huang, Xiao-Ning Ren, Ning Zheng, Wen-Lin Wei, Zhenhuan Zhao, Shao-Bin Wang, Zhong-Meng Lai","doi":"10.1038/s41380-025-03103-z","DOIUrl":null,"url":null,"abstract":"<p>Perioperative neurocognitive disorders (PND), including postoperative delirium (POD), delayed neurocognitive recovery (dNCR) and postoperative neurocognitive disorder (PNCD), affect up to 10% of surgical patients older than 60 years, and currently there are no effective therapies to prevent PND. The gut microbiota is linked to PND through the gut-brain axis, promoting neuroinflammation via activation and proliferation of microglia and astrocytes in the central nervous system (CNS). In this study, we show that perioperative use of ceftriaxone, a long-acting β-lactam antibiotic, can prevent the development of PND in elderly surgical patients. This effect is associated with reduced serum complement C3 levels and increased levels of platelet factor 4 (PF4). Using an aged mouse model of PND, we found that C3/C3aR axis mediated the interaction of astroglia and microglia during the early stages of neuroinflammation. Genetic ablation or pharmacological blockade of C3/C3aR signaling pathway suppressed neuroinflammation and attenuated cognitive declines in PND. The C3/C3aR axis is essential for surgery-induced platelet count and circulating PF4 declines, and mice supplemented with recombinant PF4 exhibited reduced neuroinflammation and improved cognitive function. Together, our findings revealed the new roles of the C3/C3aR signaling pathway in platelet dysfunction and neuroinflammation in age-related PND, and these results highlight new potential therapeutic strategies for PND.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"13 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-025-03103-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Perioperative neurocognitive disorders (PND), including postoperative delirium (POD), delayed neurocognitive recovery (dNCR) and postoperative neurocognitive disorder (PNCD), affect up to 10% of surgical patients older than 60 years, and currently there are no effective therapies to prevent PND. The gut microbiota is linked to PND through the gut-brain axis, promoting neuroinflammation via activation and proliferation of microglia and astrocytes in the central nervous system (CNS). In this study, we show that perioperative use of ceftriaxone, a long-acting β-lactam antibiotic, can prevent the development of PND in elderly surgical patients. This effect is associated with reduced serum complement C3 levels and increased levels of platelet factor 4 (PF4). Using an aged mouse model of PND, we found that C3/C3aR axis mediated the interaction of astroglia and microglia during the early stages of neuroinflammation. Genetic ablation or pharmacological blockade of C3/C3aR signaling pathway suppressed neuroinflammation and attenuated cognitive declines in PND. The C3/C3aR axis is essential for surgery-induced platelet count and circulating PF4 declines, and mice supplemented with recombinant PF4 exhibited reduced neuroinflammation and improved cognitive function. Together, our findings revealed the new roles of the C3/C3aR signaling pathway in platelet dysfunction and neuroinflammation in age-related PND, and these results highlight new potential therapeutic strategies for PND.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.