Current Status and Future Potential of Machine Learning in Diagnostic Imaging of Endometriosis : A Literature Review.

JNMA; journal of the Nepal Medical Association Pub Date : 2025-03-01 Epub Date: 2025-03-31 DOI:10.31729/jnma.8897
Palpasa Shrestha, Bibek Shrestha, Jati Sherestha, Jun Chen
{"title":"Current Status and Future Potential of Machine Learning in Diagnostic Imaging of Endometriosis : A Literature Review.","authors":"Palpasa Shrestha, Bibek Shrestha, Jati Sherestha, Jun Chen","doi":"10.31729/jnma.8897","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of endometrial tissue outside the uterus is a defining characteristic of endometriosis, a chronic systemic illness that affects women of childbearing age. Despite its enigmatic nature, laparoscopy remains the gold standard for diagnosis, while noninvasive methods such as transvaginal ultrasonography and magnetic resonance imaging are commonly used to aid in preoperative planning. In healthcare, AI has emerged as a game-changing innovation, enhancing patient outcomes, reducing costs, and revolutionizing healthcare delivery, particularly in diagnostic radiology. Images can be analyzed using machine learning, a pattern recognition method. The machine learning algorithm first computes the image characteristics deemed significant for making predictions or diagnoses about unseen images.</p>","PeriodicalId":520657,"journal":{"name":"JNMA; journal of the Nepal Medical Association","volume":"63 283","pages":"205-211"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12122278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNMA; journal of the Nepal Medical Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31729/jnma.8897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The presence of endometrial tissue outside the uterus is a defining characteristic of endometriosis, a chronic systemic illness that affects women of childbearing age. Despite its enigmatic nature, laparoscopy remains the gold standard for diagnosis, while noninvasive methods such as transvaginal ultrasonography and magnetic resonance imaging are commonly used to aid in preoperative planning. In healthcare, AI has emerged as a game-changing innovation, enhancing patient outcomes, reducing costs, and revolutionizing healthcare delivery, particularly in diagnostic radiology. Images can be analyzed using machine learning, a pattern recognition method. The machine learning algorithm first computes the image characteristics deemed significant for making predictions or diagnoses about unseen images.

机器学习在子宫内膜异位症诊断成像中的现状和未来潜力:文献综述。
子宫内膜异位症是一种影响育龄妇女的慢性全身性疾病,子宫外存在子宫内膜组织是子宫内膜异位症的一个典型特征。尽管其神秘的性质,腹腔镜检查仍然是诊断的金标准,而非侵入性方法,如经阴道超声检查和磁共振成像通常用于帮助术前计划。在医疗保健领域,人工智能已经成为一项改变游戏规则的创新,它提高了患者的治疗效果,降低了成本,并彻底改变了医疗保健服务,特别是在诊断放射学领域。图像可以使用机器学习(一种模式识别方法)进行分析。机器学习算法首先计算被认为对预测或诊断未见图像有重要意义的图像特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信