Kinetic and structural evidence for specific DMSO interference with reversible binding of uncharged bis-oximes to hAChE and their reactivation kinetics of OP-hAChE
{"title":"Kinetic and structural evidence for specific DMSO interference with reversible binding of uncharged bis-oximes to hAChE and their reactivation kinetics of OP-hAChE","authors":"Dora Kolić , Oksana Gerlits , Megan Kucharski , Lukas Gorecki , Nichole Joiner , Andrey Kovalevsky , Zoran Radić","doi":"10.1016/j.cbi.2025.111649","DOIUrl":null,"url":null,"abstract":"<div><div>The structural basis of inhibitory effect of organic solvent dimethyl sulfoxide (DMSO) on human acetylcholinesterase (EC 3.1.1.7; hAChE) was inferred from the effect of DMSO on kinetics of reversible inhibition of uncharged, heterocyclic bis-oximes to hAChE, from DMSO effect on rates of reactivation of inactive organophosphate (OP)-hAChE conjugates by bis-oximes and by X-ray structures of bis-oxime and DMSO binding to hAChE. The reversible inhibition constant of DMSO for hAChE in 0.1 M phosphate buffer pH 7.4 at 22 °C, was K<sub>i</sub>= (0.32 ± 0.04) % (or 45 ± 5 mM). The K<sub>i</sub> of the bis-oxime LG-703 for hAChE was 3.2-fold larger in 1 % DMSO, consistent with direct competition between LG-703 and DMSO. The X-ray structure of the LG-703∗hAChE complex (PDB ID: 6U3P) shows DMSO and LG-703 bound to individual hAChE monomers, LG-703 in the chain A and DMSO in the chain B. In the co-crystallization both small molecules were present at a similar excess over their corresponding K<sub>i</sub> values for hAChE (7.8-fold for DMSO and 6.5-fold for LG-703) and formation of two different complexes (DMSO∗hAChE and LG-703∗hAChE), in the same crystal, appears consistent with inhibition kinetics. Furthermore, rates of reactivation of paraoxon-inhibited hAChE (POX-hAChE) and of VX-hAChE by LG-703 and by a novel heterocyclic bis-oxime LG-1922 were reduced 2 – 3-fold in DMSO, consistent with observation of the active-center-bound DMSO molecules in the newly solved structure of the LG-1922∗POX-hAChE complex presented here and in our POX-hAChE structure (PDB ID: 8DT2) showing obstruction of the reactivator access to the conjugated P atom.</div></div>","PeriodicalId":274,"journal":{"name":"Chemico-Biological Interactions","volume":"419 ","pages":"Article 111649"},"PeriodicalIF":5.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemico-Biological Interactions","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009279725002790","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The structural basis of inhibitory effect of organic solvent dimethyl sulfoxide (DMSO) on human acetylcholinesterase (EC 3.1.1.7; hAChE) was inferred from the effect of DMSO on kinetics of reversible inhibition of uncharged, heterocyclic bis-oximes to hAChE, from DMSO effect on rates of reactivation of inactive organophosphate (OP)-hAChE conjugates by bis-oximes and by X-ray structures of bis-oxime and DMSO binding to hAChE. The reversible inhibition constant of DMSO for hAChE in 0.1 M phosphate buffer pH 7.4 at 22 °C, was Ki= (0.32 ± 0.04) % (or 45 ± 5 mM). The Ki of the bis-oxime LG-703 for hAChE was 3.2-fold larger in 1 % DMSO, consistent with direct competition between LG-703 and DMSO. The X-ray structure of the LG-703∗hAChE complex (PDB ID: 6U3P) shows DMSO and LG-703 bound to individual hAChE monomers, LG-703 in the chain A and DMSO in the chain B. In the co-crystallization both small molecules were present at a similar excess over their corresponding Ki values for hAChE (7.8-fold for DMSO and 6.5-fold for LG-703) and formation of two different complexes (DMSO∗hAChE and LG-703∗hAChE), in the same crystal, appears consistent with inhibition kinetics. Furthermore, rates of reactivation of paraoxon-inhibited hAChE (POX-hAChE) and of VX-hAChE by LG-703 and by a novel heterocyclic bis-oxime LG-1922 were reduced 2 – 3-fold in DMSO, consistent with observation of the active-center-bound DMSO molecules in the newly solved structure of the LG-1922∗POX-hAChE complex presented here and in our POX-hAChE structure (PDB ID: 8DT2) showing obstruction of the reactivator access to the conjugated P atom.
期刊介绍:
Chemico-Biological Interactions publishes research reports and review articles that examine the molecular, cellular, and/or biochemical basis of toxicologically relevant outcomes. Special emphasis is placed on toxicological mechanisms associated with interactions between chemicals and biological systems. Outcomes may include all traditional endpoints caused by synthetic or naturally occurring chemicals, both in vivo and in vitro. Endpoints of interest include, but are not limited to carcinogenesis, mutagenesis, respiratory toxicology, neurotoxicology, reproductive and developmental toxicology, and immunotoxicology.