Isolation of Mitochondria From Yeast to Estimate Mitochondrial Pools of Inorganic Phosphate.

IF 1 Q3 BIOLOGY
Swagata Adhikary, Vineeth Vengayil, Sunil Laxman
{"title":"Isolation of Mitochondria From Yeast to Estimate Mitochondrial Pools of Inorganic Phosphate.","authors":"Swagata Adhikary, Vineeth Vengayil, Sunil Laxman","doi":"10.21769/BioProtoc.5370","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are dynamic organelles with essential roles in energetics and metabolism. Several metabolites are common to both the cytosolic and mitochondrial fractions of the cell. The compartmentalization of metabolites within the mitochondria allows specialized uses for mitochondrial metabolism. Inorganic phosphate (Pi) is one such critical metabolite required for ATP synthesis, via glycolysis and mitochondrial oxidative phosphorylation. Estimating total cellular Pi levels cannot distinguish the distribution of Pi pools across different cellular compartments, such as the cytosol and mitochondria, and therefore separate the contributions made toward glycolysis or other cytosolic metabolic processes vs. mitochondrial outputs. Quantifying Pi pools in mitochondria can therefore be very useful toward understanding mitochondrial metabolism and phosphate homeostasis. Here, we describe a protocol for the fairly rapid, efficient isolation of mitochondria from <i>Saccharomyces cerevisiae</i> by immunoprecipitation for quantitative estimation of mitochondrial and cytosolic Pi pools. This method utilizes magnetic beads to capture FLAG-tagged mitochondria (Tom20-FLAG) from homogenized cell lysates. This method provides a valuable tool to investigate changes in mitochondrial phosphate dynamics. Additionally, this protocol can be coupled with LC-MS approaches to quantitatively estimate mitochondrial metabolites and proteins and can be similarly used to assess other metabolite pools that are partitioned between the cytosol and mitochondria. Key features • This protocol describes how to isolate mitochondria from <i>Saccharomyces cerevisiae</i> for quantitative estimation of inorganic phosphate or other metabolites. • Mitochondria are efficiently isolated by immunoprecipitation using magnetic beads, bypassing the need for time-consuming density-based centrifugation. • This method can be integrated into LC-MS-based workflows to quantify mitochondrial metabolites and proteins.</p>","PeriodicalId":93907,"journal":{"name":"Bio-protocol","volume":"15 13","pages":"e5370"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-protocol","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21769/BioProtoc.5370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondria are dynamic organelles with essential roles in energetics and metabolism. Several metabolites are common to both the cytosolic and mitochondrial fractions of the cell. The compartmentalization of metabolites within the mitochondria allows specialized uses for mitochondrial metabolism. Inorganic phosphate (Pi) is one such critical metabolite required for ATP synthesis, via glycolysis and mitochondrial oxidative phosphorylation. Estimating total cellular Pi levels cannot distinguish the distribution of Pi pools across different cellular compartments, such as the cytosol and mitochondria, and therefore separate the contributions made toward glycolysis or other cytosolic metabolic processes vs. mitochondrial outputs. Quantifying Pi pools in mitochondria can therefore be very useful toward understanding mitochondrial metabolism and phosphate homeostasis. Here, we describe a protocol for the fairly rapid, efficient isolation of mitochondria from Saccharomyces cerevisiae by immunoprecipitation for quantitative estimation of mitochondrial and cytosolic Pi pools. This method utilizes magnetic beads to capture FLAG-tagged mitochondria (Tom20-FLAG) from homogenized cell lysates. This method provides a valuable tool to investigate changes in mitochondrial phosphate dynamics. Additionally, this protocol can be coupled with LC-MS approaches to quantitatively estimate mitochondrial metabolites and proteins and can be similarly used to assess other metabolite pools that are partitioned between the cytosol and mitochondria. Key features • This protocol describes how to isolate mitochondria from Saccharomyces cerevisiae for quantitative estimation of inorganic phosphate or other metabolites. • Mitochondria are efficiently isolated by immunoprecipitation using magnetic beads, bypassing the need for time-consuming density-based centrifugation. • This method can be integrated into LC-MS-based workflows to quantify mitochondrial metabolites and proteins.

酵母线粒体的分离及其对无机磷酸盐池的估计。
线粒体是一种动态细胞器,在能量学和代谢中起着重要作用。一些代谢物对细胞的细胞质和线粒体部分都是共同的。线粒体内代谢物的区隔化允许线粒体代谢的特殊用途。无机磷酸盐(Pi)是ATP合成所需的关键代谢物之一,通过糖酵解和线粒体氧化磷酸化。估计细胞总Pi水平无法区分Pi池在不同细胞区室(如细胞质和线粒体)中的分布,因此无法区分糖酵解或其他细胞质代谢过程对线粒体输出的贡献。因此,量化线粒体中的Pi池对于理解线粒体代谢和磷酸盐稳态非常有用。在这里,我们描述了一个方案,为线粒体和细胞质Pi池的定量估计,通过免疫沉淀相当快速,有效地从酿酒酵母中分离线粒体。该方法利用磁珠从匀浆细胞裂解物中捕获flag标记的线粒体(Tom20-FLAG)。这种方法为研究线粒体磷酸盐动力学的变化提供了有价值的工具。此外,该方案可以与LC-MS方法相结合,定量估计线粒体代谢物和蛋白质,也可以类似地用于评估在细胞质溶胶和线粒体之间划分的其他代谢物池。•本协议描述了如何从酿酒酵母中分离线粒体,用于无机磷酸盐或其他代谢物的定量估计。•使用磁珠免疫沉淀有效地分离线粒体,绕过耗时的基于密度的离心。•该方法可集成到基于lc - ms的工作流程中,以量化线粒体代谢物和蛋白质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信