PangenePro: an automated pipeline for rapid identification and classification of gene family members.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-07-02 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf159
Kinza Fatima, Haifei Hu, Muhammad Tahir Ul Qamar
{"title":"PangenePro: an automated pipeline for rapid identification and classification of gene family members.","authors":"Kinza Fatima, Haifei Hu, Muhammad Tahir Ul Qamar","doi":"10.1093/bioadv/vbaf159","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The increasing availability of sequenced and assembled plant genomes in public databases has led to a surge in genome-wide identification (GWI) studies of gene families. However, previous studies are often single-reference genome-based, limiting their ability to capture intraspecific genetic diversity. Further, manual identification from multiple genomes is labor-intensive and time-consuming.</p><p><strong>Results: </strong>Here, we present PangenePro, a fully automated pipeline using Python and R scripting, implemented in the Linux environment, designed to identify and classify gene family members across multiple genomes simultaneously. This pipeline integrates sequence alignment using BLAST, domain validation through InterProScan, and orthologous clustering to classify the identified genes into core, dispensable, and unique pangenes sets. PangenePro was tested using five Arabidopsis thaliana, three Arachis and rice, and five Barley genomes, identifying a number of members comparable to those in previously reported studies. These results demonstrate the accuracy and efficiency of this method for gene family identification and classification in diverse and complex genomes. Moreover, its rapid nature enables comprehensive capture of intraspecific diversity and yields valuable candidate genes for further functional and plant breeding studies.</p><p><strong>Availability and implementation: </strong>The PangenePro is freely available at GitHub DOI: https://github.com/kinza111/PangenePro.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf159"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12255874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The increasing availability of sequenced and assembled plant genomes in public databases has led to a surge in genome-wide identification (GWI) studies of gene families. However, previous studies are often single-reference genome-based, limiting their ability to capture intraspecific genetic diversity. Further, manual identification from multiple genomes is labor-intensive and time-consuming.

Results: Here, we present PangenePro, a fully automated pipeline using Python and R scripting, implemented in the Linux environment, designed to identify and classify gene family members across multiple genomes simultaneously. This pipeline integrates sequence alignment using BLAST, domain validation through InterProScan, and orthologous clustering to classify the identified genes into core, dispensable, and unique pangenes sets. PangenePro was tested using five Arabidopsis thaliana, three Arachis and rice, and five Barley genomes, identifying a number of members comparable to those in previously reported studies. These results demonstrate the accuracy and efficiency of this method for gene family identification and classification in diverse and complex genomes. Moreover, its rapid nature enables comprehensive capture of intraspecific diversity and yields valuable candidate genes for further functional and plant breeding studies.

Availability and implementation: The PangenePro is freely available at GitHub DOI: https://github.com/kinza111/PangenePro.

Abstract Image

PangenePro:用于快速鉴定和分类基因家族成员的自动化流水线。
动机:公共数据库中植物基因组测序和组装的可用性不断增加,导致基因家族全基因组鉴定(GWI)研究的激增。然而,先前的研究往往是基于单参考基因组的,限制了它们捕捉种内遗传多样性的能力。此外,从多个基因组中手动识别是劳动密集型和耗时的。在这里,我们提出了PangenePro,一个使用Python和R脚本的全自动管道,在Linux环境下实现,旨在同时识别和分类多个基因组中的基因家族成员。该管道集成了BLAST序列比对、InterProScan结构域验证和同源聚类,将鉴定的基因分为核心、必要和独特的泛基因集。使用5个拟南芥、3个花生和水稻以及5个大麦基因组对PangenePro进行了测试,确定了许多与先前报道的研究相当的成员。这些结果证明了该方法在多种复杂基因组中进行基因家族鉴定和分类的准确性和有效性。此外,它的快速特性可以全面捕获种内多样性,并为进一步的功能和植物育种研究提供有价值的候选基因。可用性和实现:PangenePro在GitHub上免费提供DOI: https://github.com/kinza111/PangenePro。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信