Reconfiguration planning and structure parameter design of a reconfigurable cable-driven lower limb rehabilitation robot.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jinghang Li, Keyi Wang, Yanzhuo Wang, Yi Yuan
{"title":"Reconfiguration planning and structure parameter design of a reconfigurable cable-driven lower limb rehabilitation robot.","authors":"Jinghang Li, Keyi Wang, Yanzhuo Wang, Yi Yuan","doi":"10.1007/s11517-025-03402-1","DOIUrl":null,"url":null,"abstract":"<p><p>Reconfigurable cable-driven parallel robots (RCDPRs) have attracted much attention as a novel type of cable-driven robot that can change their cable anchor position. The reconfigurable cable-driven lower limb rehabilitation robot (RCDLR) employs RCDPRs in lower limb rehabilitation to achieve multiple training modes. This paper investigates the reconfiguration planning and structural parameter design of the RCDLR. The RCDLR aims to fulfill the requirements of early passive rehabilitation training. Therefore, motion capture data are analyzed and mapped to the target trajectory of the RCDLR. Through dynamics modeling, the Wrench-Feasible Anchor-point Space (WFAS) is defined, from which an objective function for optimal reconfiguration planning is derived. The genetic algorithm is used to solve the optimal reconfiguration planning problem. Additionally, we propose the reconfigurability and safety coefficients as components of a structure parameter design method aimed at satisfying multiple target rehabilitation trajectories. Finally, numerical simulations are implemented based on the instance data and target trajectories to compute the specific structure parameters and verify the effectiveness of the reconfiguration planning method.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03402-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Reconfigurable cable-driven parallel robots (RCDPRs) have attracted much attention as a novel type of cable-driven robot that can change their cable anchor position. The reconfigurable cable-driven lower limb rehabilitation robot (RCDLR) employs RCDPRs in lower limb rehabilitation to achieve multiple training modes. This paper investigates the reconfiguration planning and structural parameter design of the RCDLR. The RCDLR aims to fulfill the requirements of early passive rehabilitation training. Therefore, motion capture data are analyzed and mapped to the target trajectory of the RCDLR. Through dynamics modeling, the Wrench-Feasible Anchor-point Space (WFAS) is defined, from which an objective function for optimal reconfiguration planning is derived. The genetic algorithm is used to solve the optimal reconfiguration planning problem. Additionally, we propose the reconfigurability and safety coefficients as components of a structure parameter design method aimed at satisfying multiple target rehabilitation trajectories. Finally, numerical simulations are implemented based on the instance data and target trajectories to compute the specific structure parameters and verify the effectiveness of the reconfiguration planning method.

可重构缆索驱动下肢康复机器人重构规划及结构参数设计。
可重构缆索驱动并联机器人(Reconfigurable cable-driven parallel robots, RCDPRs)作为一种能够改变缆索锚点位置的新型缆索驱动机器人备受关注。可重构缆索驱动下肢康复机器人(reconfigurable cable-driven lower limb rehabilitation robot, RCDLR)将RCDPRs应用于下肢康复,实现多种训练模式。本文对RCDLR的重构规划和结构参数设计进行了研究。RCDLR旨在满足早期被动康复训练的要求。因此,对运动捕捉数据进行分析并映射到RCDLR的目标轨迹。通过动力学建模,定义了扳手-可行锚点空间,并由此导出了最优重构规划的目标函数。采用遗传算法求解最优重构规划问题。此外,我们提出了可重构性和安全系数作为结构参数设计方法的组成部分,旨在满足多个目标恢复轨迹。最后,基于实例数据和目标轨迹进行了数值仿真,计算了具体的结构参数,验证了重构规划方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信