Sialylation as a checkpoint for inflammatory and complement-related retinal diseases.

IF 4.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Cellular Neuroscience Pub Date : 2025-06-27 eCollection Date: 2025-01-01 DOI:10.3389/fncel.2025.1623755
Yiduo Min, German Cuevas-Rios, Thomas Langmann, Harald Neumann
{"title":"Sialylation as a checkpoint for inflammatory and complement-related retinal diseases.","authors":"Yiduo Min, German Cuevas-Rios, Thomas Langmann, Harald Neumann","doi":"10.3389/fncel.2025.1623755","DOIUrl":null,"url":null,"abstract":"<p><p>Sialylation is a modification process involving the addition of sialic acid residues to the termini of glycoproteins and glycolipids in mammalian cells. Sialylation serves as a crucial checkpoint inhibitor of the complement and immune systems, particularly within the central nervous system (CNS), including the retina. Complement factor H (FH), complement factor properdin (FP), and sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors of retinal mononuclear phagocytes are key players in regulating the complement and innate immune systems in the retina by recognizing sialic acid (Sia) residues. Intact retinal sialylation prevents any long-lasting and excessive complement or immune activation in the retina. However, sialylated glycolipids are reduced in the CNS with aging, potentially contributing to chronic inflammatory processes in the retina. Particularly, genetically induced hyposialylation in mice leads to age-related, complement factor C3-mediated retinal inflammation and bipolar cell loss. Notably, most of the gene transcript pathways enriched in the mouse retina, following genetically induced hyposialylation, are also involved in age-related macular degeneration (AMD). Interestingly, intravitreal application of polysialic acid (polySia) controlled the innate immune responses in the mouse retina by blocking mononuclear phagocyte reactivity, inhibiting complement activation, and protecting against vascular damage in two different humanized SIGLEC-11 animal models. Accordingly, a polySia polymer conjugate has entered clinical phase II/III testing in patients with geographic atrophy secondary to AMD. Thus, hyposialylation or dysfunctional sialylation should be considered as an age-related contributor to inflammatory retinal diseases, such as AMD. Consequently, sialic acid-based biologics could provide novel therapies for complement-related retinal diseases.</p>","PeriodicalId":12432,"journal":{"name":"Frontiers in Cellular Neuroscience","volume":"19 ","pages":"1623755"},"PeriodicalIF":4.2000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncel.2025.1623755","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sialylation is a modification process involving the addition of sialic acid residues to the termini of glycoproteins and glycolipids in mammalian cells. Sialylation serves as a crucial checkpoint inhibitor of the complement and immune systems, particularly within the central nervous system (CNS), including the retina. Complement factor H (FH), complement factor properdin (FP), and sialic acid-binding immunoglobulin-like lectin (SIGLEC) receptors of retinal mononuclear phagocytes are key players in regulating the complement and innate immune systems in the retina by recognizing sialic acid (Sia) residues. Intact retinal sialylation prevents any long-lasting and excessive complement or immune activation in the retina. However, sialylated glycolipids are reduced in the CNS with aging, potentially contributing to chronic inflammatory processes in the retina. Particularly, genetically induced hyposialylation in mice leads to age-related, complement factor C3-mediated retinal inflammation and bipolar cell loss. Notably, most of the gene transcript pathways enriched in the mouse retina, following genetically induced hyposialylation, are also involved in age-related macular degeneration (AMD). Interestingly, intravitreal application of polysialic acid (polySia) controlled the innate immune responses in the mouse retina by blocking mononuclear phagocyte reactivity, inhibiting complement activation, and protecting against vascular damage in two different humanized SIGLEC-11 animal models. Accordingly, a polySia polymer conjugate has entered clinical phase II/III testing in patients with geographic atrophy secondary to AMD. Thus, hyposialylation or dysfunctional sialylation should be considered as an age-related contributor to inflammatory retinal diseases, such as AMD. Consequently, sialic acid-based biologics could provide novel therapies for complement-related retinal diseases.

唾液酰化作为炎症和补体相关视网膜疾病的检查点。
唾液酰化是一种将唾液酸残基添加到哺乳动物细胞中糖蛋白和糖脂末端的修饰过程。唾液酰化是补体和免疫系统的关键检查点抑制剂,特别是在包括视网膜在内的中枢神经系统(CNS)中。视网膜单核吞噬细胞的补体因子H (FH)、补体因子适当素(FP)和唾液酸结合免疫球蛋白样凝集素(SIGLEC)受体是通过识别唾液酸(Sia)残基来调节视网膜补体和先天免疫系统的关键参与者。完整的视网膜唾液化可防止视网膜中任何长期和过度的补体或免疫激活。然而,随着年龄的增长,中枢神经系统唾液化糖脂减少,可能导致视网膜的慢性炎症过程。特别是,小鼠遗传诱导的低羟化导致年龄相关的补体因子c3介导的视网膜炎症和双极细胞丢失。值得注意的是,大多数在小鼠视网膜中富集的基因转录途径,在遗传诱导的低羟化之后,也与年龄相关性黄斑变性(AMD)有关。有趣的是,在两种不同的人源SIGLEC-11动物模型中,玻璃体内应用聚唾液酸(polySia)通过阻断单核吞噬细胞反应性、抑制补体激活和保护血管损伤来控制小鼠视网膜的先天免疫反应。因此,polySia聚合物缀合物已进入II/III期临床试验,用于治疗继发于AMD的地理萎缩患者。因此,低唾液酰化或功能失调应被认为是炎症性视网膜疾病(如AMD)的年龄相关因素。因此,基于唾液酸的生物制剂可以为补体相关视网膜疾病提供新的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
3.80%
发文量
627
审稿时长
6-12 weeks
期刊介绍: Frontiers in Cellular Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the cellular mechanisms underlying cell function in the nervous system across all species. Specialty Chief Editors Egidio D‘Angelo at the University of Pavia and Christian Hansel at the University of Chicago are supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信