Hierarchical construction of Co nanoparticles embedded in an N doped carbon nanotube/porous nanosheet electrocatalyst for Zn–air batteries†

IF 4.4 3区 化学 Q2 CHEMISTRY, PHYSICAL
Weiguang Fang, Jun Zhu, Shan Gao, Juanjuan Zhao, Na Li, Shoujie Liu and Mingzai Wu
{"title":"Hierarchical construction of Co nanoparticles embedded in an N doped carbon nanotube/porous nanosheet electrocatalyst for Zn–air batteries†","authors":"Weiguang Fang, Jun Zhu, Shan Gao, Juanjuan Zhao, Na Li, Shoujie Liu and Mingzai Wu","doi":"10.1039/D5CY00483G","DOIUrl":null,"url":null,"abstract":"<p >Inefficient cathodic reactions severely limit the practical performance of rechargeable zinc–air batteries (RZABs) and become a fundamental bottleneck in their development. The exploitation of cost-effective cathode electrocatalysts is significant for addressing this issue. Herein, we demonstrate a facile programmed annealing strategy to fabricate an efficient electrocatalyst with a structure of Co nanoparticles embedded in N doped carbon nanotubes/porous nanosheets (Co@DUGC). Benefiting from the <em>in situ</em> wrapped Co nanoparticles and doped N as catalytic and adsorptive sites, and a hierarchical carbon nanotube/porous nanosheet architecture for fast electron transfer and mass diffusion, the fabricated Co@DUGC exhibits excellent bifunctional electrocatalytic performance with a positive half-wave potential of 0.87 V in the ORR and a low overpotential of 414 mV in the OER. As a cathodic catalyst, Co@DUGC endows a home-made liquid RZAB with a high peak power density of 150 mW cm<small><sup>−2</sup></small>, a large specific discharge capacity of 816.9 mA h g<small><sub>Zn</sub></small><small><sup>−1</sup></small> and a durable rechargeability of 314 cycles. Meanwhile, a button RZAB based on Co@DUGC displays a peak power density of 85.3 mW cm<small><sup>−2</sup></small>, a specific discharge capacity of 643.7 mA h g<small><sub>Zn</sub></small><small><sup>−1</sup></small> and a charge–discharge cycle life over 95 times, revealing its reliability for portable applications. This work demonstrates a convenient and rational design of transition metal decorated carbon electrocatalysts for high-performance RZABs.</p>","PeriodicalId":66,"journal":{"name":"Catalysis Science & Technology","volume":" 14","pages":" 4291-4302"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Science & Technology","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/cy/d5cy00483g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inefficient cathodic reactions severely limit the practical performance of rechargeable zinc–air batteries (RZABs) and become a fundamental bottleneck in their development. The exploitation of cost-effective cathode electrocatalysts is significant for addressing this issue. Herein, we demonstrate a facile programmed annealing strategy to fabricate an efficient electrocatalyst with a structure of Co nanoparticles embedded in N doped carbon nanotubes/porous nanosheets (Co@DUGC). Benefiting from the in situ wrapped Co nanoparticles and doped N as catalytic and adsorptive sites, and a hierarchical carbon nanotube/porous nanosheet architecture for fast electron transfer and mass diffusion, the fabricated Co@DUGC exhibits excellent bifunctional electrocatalytic performance with a positive half-wave potential of 0.87 V in the ORR and a low overpotential of 414 mV in the OER. As a cathodic catalyst, Co@DUGC endows a home-made liquid RZAB with a high peak power density of 150 mW cm−2, a large specific discharge capacity of 816.9 mA h gZn−1 and a durable rechargeability of 314 cycles. Meanwhile, a button RZAB based on Co@DUGC displays a peak power density of 85.3 mW cm−2, a specific discharge capacity of 643.7 mA h gZn−1 and a charge–discharge cycle life over 95 times, revealing its reliability for portable applications. This work demonstrates a convenient and rational design of transition metal decorated carbon electrocatalysts for high-performance RZABs.

Abstract Image

氮掺杂碳纳米管/多孔纳米片电催化剂中Co纳米颗粒的层次化结构[j]
低效的阴极反应严重限制了可充电锌空气电池(RZABs)的实际性能,成为其发展的根本瓶颈。开发高性价比的阴极电催化剂对解决这一问题具有重要意义。在此,我们展示了一种简单的编程退火策略来制造一种高效的电催化剂,其结构是Co纳米颗粒嵌入在N掺杂碳纳米管/多孔纳米片中(Co@DUGC)。利用原位包裹的Co纳米颗粒和掺杂的N作为催化和吸附位点,以及碳纳米管/多孔纳米片结构的快速电子传递和质量扩散,制备的Co@DUGC具有优异的双功能电催化性能,在ORR中具有0.87 V的正半波电位,在OER中具有414 mV的低过电位。Co@DUGC作为阴极催化剂,自制的液态RZAB峰值功率密度高达150 mW cm−2,比放电容量高达816.9 mA h gZn−1,可重复充电314次。同时,基于Co@DUGC的按钮RZAB的峰值功率密度为85.3 mW cm−2,比放电容量为643.7 mA h gZn−1,充放电循环寿命超过95次,显示了其便携式应用的可靠性。本工作为高性能RZABs的过渡金属修饰碳电催化剂的设计提供了方便和合理的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Catalysis Science & Technology
Catalysis Science & Technology CHEMISTRY, PHYSICAL-
CiteScore
8.70
自引率
6.00%
发文量
587
审稿时长
1.5 months
期刊介绍: A multidisciplinary journal focusing on cutting edge research across all fundamental science and technological aspects of catalysis. Editor-in-chief: Bert Weckhuysen Impact factor: 5.0 Time to first decision (peer reviewed only): 31 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信