Toeplitz and Hankel determinants of logarithmic coefficients for r-valent q-starlike and r-valent q-convex functions

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-07-07 DOI:10.1016/j.mex.2025.103463
Pishtiwan Othman Sabir, Awara Ahmed Ali
{"title":"Toeplitz and Hankel determinants of logarithmic coefficients for r-valent q-starlike and r-valent q-convex functions","authors":"Pishtiwan Othman Sabir,&nbsp;Awara Ahmed Ali","doi":"10.1016/j.mex.2025.103463","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of the present paper is to extend the notions of <span><math><mi>q</mi></math></span>-starlikeness and <span><math><mi>q</mi></math></span>-convexity to encompass multivalent <span><math><mi>q</mi></math></span>-starlikeness and multivalent <span><math><mi>q</mi></math></span>-convexity. We systematically introduce and examine subfamilies of <span><math><mi>r</mi></math></span>-valently holomorphic functions within the open unit disk <span><math><mi>D</mi></math></span> by employing the fractional <span><math><mi>q</mi></math></span>-derivative operator, along with the principle of subordination between holomorphic functions.<ul><li><span>•</span><span><div>The families we define in this paper constitute a generalization of numerous established classes available in existing literature.</div></span></li><li><span>•</span><span><div>We derive the Fekete-Szegö inequalities for these newly introduced families.</div></span></li><li><span>•</span><span><div>As a result, we apply these findings to establish bounds for the Toeplitz and Hankel determinants <span><math><mrow><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mrow><mi>u</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, defined as follows:<span><span><span><math><mrow><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow><mo>,</mo><mspace></mspace><msub><mi>T</mi><mrow><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow><mspace></mspace><mspace></mspace><mtext>and</mtext><mspace></mspace><mspace></mspace><msub><mi>H</mi><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub><mrow><mo>(</mo><msub><mi>γ</mi><mi>u</mi></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>|</mo><mtable><mtr><mtd><msub><mi>γ</mi><mn>1</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd></mtr><mtr><mtd><msub><mi>γ</mi><mn>2</mn></msub></mtd><mtd><msub><mi>γ</mi><mn>3</mn></msub></mtd></mtr></mtable><mo>|</mo></mrow></mrow></math></span></span></span>where <span><math><mrow><msub><mi>γ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>γ</mi><mn>2</mn></msub></mrow></math></span>, and <span><math><msub><mi>γ</mi><mn>3</mn></msub></math></span> denote the first, second, and third logarithmic coefficients of functions within the family of multivalent <span><math><mi>q</mi></math></span>-starlike and multivalent <span><math><mi>q</mi></math></span>-convex functions.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103463"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of the present paper is to extend the notions of q-starlikeness and q-convexity to encompass multivalent q-starlikeness and multivalent q-convexity. We systematically introduce and examine subfamilies of r-valently holomorphic functions within the open unit disk D by employing the fractional q-derivative operator, along with the principle of subordination between holomorphic functions.
  • The families we define in this paper constitute a generalization of numerous established classes available in existing literature.
  • We derive the Fekete-Szegö inequalities for these newly introduced families.
  • As a result, we apply these findings to establish bounds for the Toeplitz and Hankel determinants T2,1(γu),T2,2(γu) and H2,1(γu), defined as follows:T2,1(γu)=|γ1γ2γ2γ1|,T2,2(γu)=|γ2γ3γ3γ2|andH2,1(γu)=|γ1γ2γ2γ3|where γ1,γ2, and γ3 denote the first, second, and third logarithmic coefficients of functions within the family of multivalent q-starlike and multivalent q-convex functions.

Abstract Image

r价q-星形和r价q-凸函数的对数系数的Toeplitz和Hankel行列式
本文的目的是将q-星形和q-凸的概念推广到包含多价q-星形和多价q-凸。利用分数阶q导数算子,利用全纯函数间的从属原理,系统地引入和检验了开单位盘D上的r价全纯函数的子族。•我们在本文中定义的家庭构成了现有文献中可用的众多既定类别的概括。•我们为这些新引入的家庭推导出Fekete-Szegö不等式。•结果,我们应用这些发现建立了Toeplitz和Hankel行列式T2,1(γu),T2,2(γu)和H2,1(γu)的界,定义如下:T2,1(γu)=|γ1γ2γ2γ1 γ1|,T2,2(γu)=|γ2γ3 γ2|和H2,1(γu)=|γ1γ2γ2γ3|,其中γ1,γ2和γ3表示多价q-星形函数和多价q-凸函数族内函数的第一,第二和第三对数系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信