A Survey on Efficient Vision‐Language Models

Gaurav Shinde, Anuradha Ravi, Emon Dey, Shadman Sakib, Milind Rampure, Nirmalya Roy
{"title":"A Survey on Efficient Vision‐Language Models","authors":"Gaurav Shinde, Anuradha Ravi, Emon Dey, Shadman Sakib, Milind Rampure, Nirmalya Roy","doi":"10.1002/widm.70036","DOIUrl":null,"url":null,"abstract":"Vision‐language models (VLMs) integrate visual and textual information, enabling a wide range of applications such as image captioning and visual question answering, making them crucial for modern AI systems. However, their high computational demands pose challenges for real‐time applications. This has led to a growing focus on developing efficient vision‐language models. In this survey, we review key techniques for optimizing VLMs on edge and resource‐constrained devices. We also explore compact VLM architectures, frameworks, and provide detailed insights into the performance–memory trade‐offs of efficient VLMs. Furthermore, we establish a GitHub repository at MPSC‐GitHub to compile all surveyed papers, which we will actively update. Our objective is to foster deeper research in this area.This article is categorized under: <jats:list list-type=\"simple\"> <jats:list-item>Fundamental Concepts of Data and Knowledge &gt; Big Data Mining</jats:list-item> <jats:list-item>Technologies &gt; Internet of Things</jats:list-item> <jats:list-item>Technologies &gt; Artificial Intelligence</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.70036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vision‐language models (VLMs) integrate visual and textual information, enabling a wide range of applications such as image captioning and visual question answering, making them crucial for modern AI systems. However, their high computational demands pose challenges for real‐time applications. This has led to a growing focus on developing efficient vision‐language models. In this survey, we review key techniques for optimizing VLMs on edge and resource‐constrained devices. We also explore compact VLM architectures, frameworks, and provide detailed insights into the performance–memory trade‐offs of efficient VLMs. Furthermore, we establish a GitHub repository at MPSC‐GitHub to compile all surveyed papers, which we will actively update. Our objective is to foster deeper research in this area.This article is categorized under: Fundamental Concepts of Data and Knowledge > Big Data Mining Technologies > Internet of Things Technologies > Artificial Intelligence
高效视觉语言模型研究综述
视觉语言模型(vlm)集成了视觉和文本信息,实现了广泛的应用,如图像字幕和视觉问答,使其成为现代人工智能系统的关键。然而,它们的高计算需求给实时应用带来了挑战。这使得人们越来越关注开发高效的视觉语言模型。在本调查中,我们回顾了在边缘和资源受限设备上优化vlm的关键技术。我们还探讨了紧凑的VLM架构、框架,并提供了高效VLM的性能内存权衡的详细见解。此外,我们在MPSC - GitHub上建立了一个GitHub存储库来编译所有被调查的论文,我们将积极更新。我们的目标是促进这一领域的深入研究。本文分类如下:数据和知识的基本概念>;大数据挖掘技术;物联网技术;人工智能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信