Enhancing Parkinson's disease prediction using meta-heuristic optimized machine learning models.

Personalized medicine Pub Date : 2025-08-01 Epub Date: 2025-07-11 DOI:10.1080/17410541.2025.2532361
Afeez A Soladoye, David B Olawade, Adebimpe O Esan, Nicholas Aderinto, Bolaji A Omodunbi, Ibrahim A Adeyanju, Stergios Boussios
{"title":"Enhancing Parkinson's disease prediction using meta-heuristic optimized machine learning models.","authors":"Afeez A Soladoye, David B Olawade, Adebimpe O Esan, Nicholas Aderinto, Bolaji A Omodunbi, Ibrahim A Adeyanju, Stergios Boussios","doi":"10.1080/17410541.2025.2532361","DOIUrl":null,"url":null,"abstract":"<p><p>Parkinson's disease is a progressive neurological disorder affecting movement and cognition. Early detection is crucial but challenging with traditional methods. This study applies meta-heuristic optimization to enhance machine learning prediction models. A Parkinson's dataset with demographic, lifestyle, medical, clinical, and cognitive features was analyzed using three feature selection techniques: Whale Optimization Algorithm, Artificial Bee Colony Optimization, and Backward Elimination (BE). Random Forest (RF) models were optimized using Artificial Ant Colony Optimization for hyperparameter tuning. The optimized RF model with BE achieved 93% accuracy and 97% AUC, outperforming K-Nearest Neighbors, Support Vector Machines, Logistic Regression, XGBoost, and Stacked Ensemble models. Optimization reduced tuning time from 133 to 18 minutes. A comparison with traditional approaches and negative controls validated the results, though clinical validation remains essential before deployment. Meta-heuristic optimization significantly improves Parkinson's prediction performance and efficiency.</p>","PeriodicalId":94167,"journal":{"name":"Personalized medicine","volume":" ","pages":"223-234"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personalized medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17410541.2025.2532361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parkinson's disease is a progressive neurological disorder affecting movement and cognition. Early detection is crucial but challenging with traditional methods. This study applies meta-heuristic optimization to enhance machine learning prediction models. A Parkinson's dataset with demographic, lifestyle, medical, clinical, and cognitive features was analyzed using three feature selection techniques: Whale Optimization Algorithm, Artificial Bee Colony Optimization, and Backward Elimination (BE). Random Forest (RF) models were optimized using Artificial Ant Colony Optimization for hyperparameter tuning. The optimized RF model with BE achieved 93% accuracy and 97% AUC, outperforming K-Nearest Neighbors, Support Vector Machines, Logistic Regression, XGBoost, and Stacked Ensemble models. Optimization reduced tuning time from 133 to 18 minutes. A comparison with traditional approaches and negative controls validated the results, though clinical validation remains essential before deployment. Meta-heuristic optimization significantly improves Parkinson's prediction performance and efficiency.

利用元启发式优化机器学习模型增强帕金森病预测。
帕金森病是一种影响运动和认知的进行性神经系统疾病。早期检测至关重要,但传统方法具有挑战性。本研究应用元启发式优化来增强机器学习预测模型。采用鲸优化算法、人工蜂群优化和逆向消去(BE)三种特征选择技术,对具有人口统计学、生活方式、医学、临床和认知特征的帕金森病数据集进行了分析。采用人工蚁群算法对随机森林模型进行超参数整定。使用BE优化的RF模型实现了93%的准确率和97%的AUC,优于k近邻、支持向量机、逻辑回归、XGBoost和堆叠集成模型。优化将调优时间从133分钟减少到18分钟。与传统方法和阴性对照的比较验证了结果,但在部署之前仍需进行临床验证。元启发式优化显著提高了帕金森病的预测性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信