Daniella V. Martinez, Jenna Y. Schambach, Oleg Davydovich, Monica R. Mascarenas, Sadi C. Butler, Stephanie Kolker, Jay E. Salinas, Chuck R. Smallwood, Hemant Choudhary, Carlos Quiroz-Arita, Michael S. Kent
{"title":"Chelator-mediated Fenton post-treatment enhances methane yield from lignocellulosic residues via microbial community modulation","authors":"Daniella V. Martinez, Jenna Y. Schambach, Oleg Davydovich, Monica R. Mascarenas, Sadi C. Butler, Stephanie Kolker, Jay E. Salinas, Chuck R. Smallwood, Hemant Choudhary, Carlos Quiroz-Arita, Michael S. Kent","doi":"10.1186/s13068-025-02672-z","DOIUrl":null,"url":null,"abstract":"<div><p>Advancing biomethane production from anaerobic digestion (AD) is essential for building a more reliable and resilient bioenergy system. However, incomplete conversion of lignocellulose-rich agricultural waste remains a key limitation, often leaving energy-dense residues in the digestate by-product. In this study, we introduce a novel application of chelator-mediated Fenton (CMF) post-treatment to recover untapped biomethane potential from these recalcitrant residues, representing a significant departure from conventional pre-treatment strategies. By systematically varying pH, iron-chelator concentration, and hydrogen peroxide dosage, we identified reaction conditions (pH 6–8, 5 mM Fe<sup>2+</sup>-dihydroxybenzene, 3–4 wt.% H<sub>2</sub>O<sub>2</sub>) that enhanced lignocellulose deconstruction and increased dissolved organic carbon (DOC) availability for methanogenesis. CMF post-treatment led to up to a tenfold increase in biomethane potential compared to untreated controls. Microbial community analysis revealed enrichment of cellulolytic species, suggesting enhanced hydrolytic activity as a driver of improved conversion. Application of the CMF post-treatment method to isolated poplar lignin further demonstrated its versatility for diverse lignocellulosic substrates. These findings position CMF post-treatment as a promising strategy to enhance AD efficiency and valorize digestate.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":494,"journal":{"name":"Biotechnology for Biofuels","volume":"18 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13068-025-02672-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Advancing biomethane production from anaerobic digestion (AD) is essential for building a more reliable and resilient bioenergy system. However, incomplete conversion of lignocellulose-rich agricultural waste remains a key limitation, often leaving energy-dense residues in the digestate by-product. In this study, we introduce a novel application of chelator-mediated Fenton (CMF) post-treatment to recover untapped biomethane potential from these recalcitrant residues, representing a significant departure from conventional pre-treatment strategies. By systematically varying pH, iron-chelator concentration, and hydrogen peroxide dosage, we identified reaction conditions (pH 6–8, 5 mM Fe2+-dihydroxybenzene, 3–4 wt.% H2O2) that enhanced lignocellulose deconstruction and increased dissolved organic carbon (DOC) availability for methanogenesis. CMF post-treatment led to up to a tenfold increase in biomethane potential compared to untreated controls. Microbial community analysis revealed enrichment of cellulolytic species, suggesting enhanced hydrolytic activity as a driver of improved conversion. Application of the CMF post-treatment method to isolated poplar lignin further demonstrated its versatility for diverse lignocellulosic substrates. These findings position CMF post-treatment as a promising strategy to enhance AD efficiency and valorize digestate.
期刊介绍:
Biotechnology for Biofuels is an open access peer-reviewed journal featuring high-quality studies describing technological and operational advances in the production of biofuels, chemicals and other bioproducts. The journal emphasizes understanding and advancing the application of biotechnology and synergistic operations to improve plants and biological conversion systems for the biological production of these products from biomass, intermediates derived from biomass, or CO2, as well as upstream or downstream operations that are integral to biological conversion of biomass.
Biotechnology for Biofuels focuses on the following areas:
• Development of terrestrial plant feedstocks
• Development of algal feedstocks
• Biomass pretreatment, fractionation and extraction for biological conversion
• Enzyme engineering, production and analysis
• Bacterial genetics, physiology and metabolic engineering
• Fungal/yeast genetics, physiology and metabolic engineering
• Fermentation, biocatalytic conversion and reaction dynamics
• Biological production of chemicals and bioproducts from biomass
• Anaerobic digestion, biohydrogen and bioelectricity
• Bioprocess integration, techno-economic analysis, modelling and policy
• Life cycle assessment and environmental impact analysis