Haibao Wang, Jun Kai Ho, Fan L Cheng, Shuntaro C Aoki, Yusuke Muraki, Misato Tanaka, Jong-Yun Park, Yukiyasu Kamitani
{"title":"Inter-individual and inter-site neural code conversion without shared stimuli.","authors":"Haibao Wang, Jun Kai Ho, Fan L Cheng, Shuntaro C Aoki, Yusuke Muraki, Misato Tanaka, Jong-Yun Park, Yukiyasu Kamitani","doi":"10.1038/s43588-025-00826-5","DOIUrl":null,"url":null,"abstract":"<p><p>Inter-individual variability in fine-grained functional topographies poses challenges for scalable data analysis and modeling. Functional alignment techniques can help mitigate these individual differences but they typically require paired brain data with the same stimuli between individuals, which are often unavailable. Here we present a neural code conversion method that overcomes this constraint by optimizing conversion parameters based on the discrepancy between the stimulus contents represented by original and converted brain activity patterns. This approach, combined with hierarchical features of deep neural networks as latent content representations, achieves conversion accuracies that are comparable with methods using shared stimuli. The converted brain activity from a source subject can be accurately decoded using the target's pre-trained decoders, producing high-quality visual image reconstructions that rival within-individual decoding, even with data across different sites and limited training samples. Our approach offers a promising framework for scalable neural data analysis and modeling and a foundation for brain-to-brain communication.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":"534-546"},"PeriodicalIF":12.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00826-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Inter-individual variability in fine-grained functional topographies poses challenges for scalable data analysis and modeling. Functional alignment techniques can help mitigate these individual differences but they typically require paired brain data with the same stimuli between individuals, which are often unavailable. Here we present a neural code conversion method that overcomes this constraint by optimizing conversion parameters based on the discrepancy between the stimulus contents represented by original and converted brain activity patterns. This approach, combined with hierarchical features of deep neural networks as latent content representations, achieves conversion accuracies that are comparable with methods using shared stimuli. The converted brain activity from a source subject can be accurately decoded using the target's pre-trained decoders, producing high-quality visual image reconstructions that rival within-individual decoding, even with data across different sites and limited training samples. Our approach offers a promising framework for scalable neural data analysis and modeling and a foundation for brain-to-brain communication.