Ahmed El Motiam, Yanis H Bouzaher, Haifen Chen, Rocío Seoane, Santiago Vidal, María Blanquer, Rocío M Tolosa, Beatriz Rodríguez-Lemus, José A Herrera-Gavilán, Anxo Vidal, Ignacio Palmero, Manuel S Rodríguez, James D Sutherland, Rosa Barrio, Dimitris Xirodimas, Manuel Collado, Rod Bremner, Carmen Rivas
{"title":"SUMOylation of the lysine-less tumor suppressor p14ARF counters ubiquitylation-dependent degradation.","authors":"Ahmed El Motiam, Yanis H Bouzaher, Haifen Chen, Rocío Seoane, Santiago Vidal, María Blanquer, Rocío M Tolosa, Beatriz Rodríguez-Lemus, José A Herrera-Gavilán, Anxo Vidal, Ignacio Palmero, Manuel S Rodríguez, James D Sutherland, Rosa Barrio, Dimitris Xirodimas, Manuel Collado, Rod Bremner, Carmen Rivas","doi":"10.1038/s41419-025-07854-z","DOIUrl":null,"url":null,"abstract":"<p><p>p14ARF is a lysine-less tumor suppressor that enhances SUMOylation of its interactors. Although p14ARF is known to interact with the E2 SUMO conjugating enzyme UBC9, the link between ARF and SUMOylation is poorly understood and the potential impact of SUMOylation on p14ARF is unknown. Here we show that SUMO2 conjugates to the N-terminus of p14ARF and stabilizes it. Either depleting UBC9 or pharmacologically inhibiting SUMOylation, induces p14ARF degradation. In contrast, blocking ubiquitination or NEDDylation, with TAK-243 or MLN4924/Pevonedistat respectively, increases p14ARF SUMOylation and restores p14ARF levels when SUMOylation is blocked. Treatment with MLN4924 also causes p14ARF-dependent mRNA upregulation of the SUMOylation components SUMO1, SUMO2, and UBC9, globally augmenting SUMOylation. Finally, p14ARF contributes to MLN4924-driven cytotoxicity of prostate cancer cells. Our results provide evidence that, despite lacking lysine, p14ARF is SUMOylated and this modification is critical to counter ubiquitin driven degradation and establishes a new link between inhibition of NEDDylation and SUMOylation.</p>","PeriodicalId":9734,"journal":{"name":"Cell Death & Disease","volume":"16 1","pages":"519"},"PeriodicalIF":8.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death & Disease","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41419-025-07854-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
p14ARF is a lysine-less tumor suppressor that enhances SUMOylation of its interactors. Although p14ARF is known to interact with the E2 SUMO conjugating enzyme UBC9, the link between ARF and SUMOylation is poorly understood and the potential impact of SUMOylation on p14ARF is unknown. Here we show that SUMO2 conjugates to the N-terminus of p14ARF and stabilizes it. Either depleting UBC9 or pharmacologically inhibiting SUMOylation, induces p14ARF degradation. In contrast, blocking ubiquitination or NEDDylation, with TAK-243 or MLN4924/Pevonedistat respectively, increases p14ARF SUMOylation and restores p14ARF levels when SUMOylation is blocked. Treatment with MLN4924 also causes p14ARF-dependent mRNA upregulation of the SUMOylation components SUMO1, SUMO2, and UBC9, globally augmenting SUMOylation. Finally, p14ARF contributes to MLN4924-driven cytotoxicity of prostate cancer cells. Our results provide evidence that, despite lacking lysine, p14ARF is SUMOylated and this modification is critical to counter ubiquitin driven degradation and establishes a new link between inhibition of NEDDylation and SUMOylation.
期刊介绍:
Brought to readers by the editorial team of Cell Death & Differentiation, Cell Death & Disease is an online peer-reviewed journal specializing in translational cell death research. It covers a wide range of topics in experimental and internal medicine, including cancer, immunity, neuroscience, and now cancer metabolism.
Cell Death & Disease seeks to encompass the breadth of translational implications of cell death, and topics of particular concentration will include, but are not limited to, the following:
Experimental medicine
Cancer
Immunity
Internal medicine
Neuroscience
Cancer metabolism