{"title":"Hydraulic Performance of Measurement-Control Integrated Side Sluice Gates Under Subcritical Flow Conditions","authors":"Tiantian Liu, Wenyong Wu, Ziming Li, Yaqi Hu, Aike Guo","doi":"10.1002/ird.3085","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The lack of a precise flow measurement device for terminal irrigation channel diversion often results in significant inaccuracies. To address this issue, a wide-bottom sill flow measurement device, the ‘measurement-control integrated side sluice gate’ (MCIS), was developed to facilitate accurate flow measurement. This study investigated the hydraulic characteristics and mechanism of lateral flow in the MCIS, including flow regimes, changes in water surface profiles and assessments of head losses. Discharge equations for the MCIS were then created via dimensional analysis and multiple nonlinear regression, and their accuracy was assessed and validated. The findings reveal that at high relative openings (<i>e</i>/<i>H</i><sub>1</sub>), the flow through the MCIS follows weir flow characteristics, whereas at low <i>e</i>/<i>H</i><sub>1</sub> ratios, it exhibits orifice flow behaviour. The transition point between these flow regimes, identified as the critical relative opening (<i>e</i>/<i>H</i><sub>1</sub>)<sub><i>c</i></sub>, is 0.84. The overall accuracy of flow measurement using the MCIS gate structure is 4%, with the weir flow equation achieving an average accuracy of 1.4%, surpassing the accuracy of the rectangular sharp-crested side weir flow measurement equation by more than 2.5 times. Similarly, the average accuracy of the orifice flow equation is 4%, which is 1.1 times higher than that of the rectangular spire side orifice.</p>\n </div>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"74 3","pages":"915-932"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.3085","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of a precise flow measurement device for terminal irrigation channel diversion often results in significant inaccuracies. To address this issue, a wide-bottom sill flow measurement device, the ‘measurement-control integrated side sluice gate’ (MCIS), was developed to facilitate accurate flow measurement. This study investigated the hydraulic characteristics and mechanism of lateral flow in the MCIS, including flow regimes, changes in water surface profiles and assessments of head losses. Discharge equations for the MCIS were then created via dimensional analysis and multiple nonlinear regression, and their accuracy was assessed and validated. The findings reveal that at high relative openings (e/H1), the flow through the MCIS follows weir flow characteristics, whereas at low e/H1 ratios, it exhibits orifice flow behaviour. The transition point between these flow regimes, identified as the critical relative opening (e/H1)c, is 0.84. The overall accuracy of flow measurement using the MCIS gate structure is 4%, with the weir flow equation achieving an average accuracy of 1.4%, surpassing the accuracy of the rectangular sharp-crested side weir flow measurement equation by more than 2.5 times. Similarly, the average accuracy of the orifice flow equation is 4%, which is 1.1 times higher than that of the rectangular spire side orifice.
期刊介绍:
Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.