Juan Jesus Vicente, Jacob Weiss, Michael Wagenbach, Linda Wordeman
{"title":"The Kinesin Motor Kif9 Disrupts Primary Cilia Length by Mispositioning Centriolar Satellites","authors":"Juan Jesus Vicente, Jacob Weiss, Michael Wagenbach, Linda Wordeman","doi":"10.1096/fj.202501115R","DOIUrl":null,"url":null,"abstract":"<p>Primary cilia are nonmotile, microtubule-based structures on the surface of most vertebrate cells, acting as sensory hubs to regulate cellular responses. Their formation, maintenance, and disassembly are tightly regulated, with dysfunction linked to diseases like ciliopathies, cancer, and neurological disorders. Centriolar satellites (CS), membrane-less granules around the centrosome, are involved in protein trafficking to and from the centrosome and centrosomal function, and regulate primary cilia. We show that Kif9 loss causes CS aggregation near the centrosome, leading to defects in cilia length and altering the levels of key primary cilia proteins like TALPID3, CEP131, CEP170, and CEP290.</p>","PeriodicalId":50455,"journal":{"name":"The FASEB Journal","volume":"39 14","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1096/fj.202501115R","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FASEB Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fj.202501115R","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Primary cilia are nonmotile, microtubule-based structures on the surface of most vertebrate cells, acting as sensory hubs to regulate cellular responses. Their formation, maintenance, and disassembly are tightly regulated, with dysfunction linked to diseases like ciliopathies, cancer, and neurological disorders. Centriolar satellites (CS), membrane-less granules around the centrosome, are involved in protein trafficking to and from the centrosome and centrosomal function, and regulate primary cilia. We show that Kif9 loss causes CS aggregation near the centrosome, leading to defects in cilia length and altering the levels of key primary cilia proteins like TALPID3, CEP131, CEP170, and CEP290.
期刊介绍:
The FASEB Journal publishes international, transdisciplinary research covering all fields of biology at every level of organization: atomic, molecular, cell, tissue, organ, organismic and population. While the journal strives to include research that cuts across the biological sciences, it also considers submissions that lie within one field, but may have implications for other fields as well. The journal seeks to publish basic and translational research, but also welcomes reports of pre-clinical and early clinical research. In addition to research, review, and hypothesis submissions, The FASEB Journal also seeks perspectives, commentaries, book reviews, and similar content related to the life sciences in its Up Front section.