EdgeKG-EN: A Dynamic English Knowledge Graph Framework With Edge Computing-Driven Optimization

IF 0.5 Q4 TELECOMMUNICATIONS
Minling Wu
{"title":"EdgeKG-EN: A Dynamic English Knowledge Graph Framework With Edge Computing-Driven Optimization","authors":"Minling Wu","doi":"10.1002/itl2.70083","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Addressing the limitations of traditional cloud architectures in timeliness, heterogeneous adaptability, and energy efficiency, this paper presents EdgeKG-EN, an edge-intelligence-driven dynamic knowledge graph framework for adaptive English education. The framework establishes three core mechanisms: temporal attention-based dynamic graph modeling for real-time concept evolution tracking, lightweight knowledge distillation protocols that enable efficient edge-device updates, and reinforcement learning-based scheduling strategies that optimize resource allocation. Multimodal learning alignment ensures cognitive-semantic consistency while privacy-preserving mechanisms guarantee data security. Experiments demonstrate that the framework significantly enhances knowledge reasoning timeliness and personalized recommendation accuracy under low-power operation, providing a novel solution for distributed educational scenarios.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 5","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Addressing the limitations of traditional cloud architectures in timeliness, heterogeneous adaptability, and energy efficiency, this paper presents EdgeKG-EN, an edge-intelligence-driven dynamic knowledge graph framework for adaptive English education. The framework establishes three core mechanisms: temporal attention-based dynamic graph modeling for real-time concept evolution tracking, lightweight knowledge distillation protocols that enable efficient edge-device updates, and reinforcement learning-based scheduling strategies that optimize resource allocation. Multimodal learning alignment ensures cognitive-semantic consistency while privacy-preserving mechanisms guarantee data security. Experiments demonstrate that the framework significantly enhances knowledge reasoning timeliness and personalized recommendation accuracy under low-power operation, providing a novel solution for distributed educational scenarios.

基于边缘计算驱动优化的动态英语知识图谱框架
针对传统云架构在时效性、异构适应性和能效方面的局限性,本文提出了边缘智能驱动的适应性英语教育动态知识图谱框架EdgeKG-EN。该框架建立了三个核心机制:用于实时概念演变跟踪的基于时间注意力的动态图建模,支持高效边缘设备更新的轻量级知识蒸馏协议,以及优化资源分配的基于强化学习的调度策略。多模态学习对齐确保认知语义一致性,而隐私保护机制保证数据安全性。实验表明,该框架在低功耗运行下显著提高了知识推理的时效性和个性化推荐的准确性,为分布式教育场景提供了一种新的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信