Meng Wang , Yunfeng Zhao , Zhongmin Yan , Jinglin Zhang , Jun Wang , Guoxian Yu
{"title":"Few-shot partial multi-label learning with credible non-candidate label","authors":"Meng Wang , Yunfeng Zhao , Zhongmin Yan , Jinglin Zhang , Jun Wang , Guoxian Yu","doi":"10.1016/j.ins.2025.122485","DOIUrl":null,"url":null,"abstract":"<div><div>Partial multi-label learning (PML) addresses scenarios where each training sample is associated with multiple candidate labels, but only a subset are ground-truth labels. The primary difficulty in PML is to mitigate the negative impact of noisy labels. Most existing PML methods rely on sufficient samples to train a noise-robust multi-label classifier. However, in practical scenarios, such as privacy-sensitive domains or those with limited data, only a few training samples are typically available for the target task. In this paper, we propose an approach called <span>FsPML-CNL</span> (Few-shot Partial Multi-label Learning with Credible Non-candidate Label) to tackle the PML problem with few-shot training samples. Specifically, <span>FsPML-CNL</span> first utilizes the sample features and feature-prototype similarity in the embedding space to disambiguate candidate labels and to obtain label prototypes. Then, the credible non-candidate label is selected based on label correlation and confidence, and its prototype is incorporated into the training samples to generate new data for boosting supervised information. The noise-tolerant multi-label classifier is finally induced with the original and generated samples, along with the confidence-guided loss. Extensive experiments on public datasets demonstrate that <span>FsPML-CNL</span> outperforms competitive baselines across different settings.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"719 ","pages":"Article 122485"},"PeriodicalIF":6.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525006176","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Partial multi-label learning (PML) addresses scenarios where each training sample is associated with multiple candidate labels, but only a subset are ground-truth labels. The primary difficulty in PML is to mitigate the negative impact of noisy labels. Most existing PML methods rely on sufficient samples to train a noise-robust multi-label classifier. However, in practical scenarios, such as privacy-sensitive domains or those with limited data, only a few training samples are typically available for the target task. In this paper, we propose an approach called FsPML-CNL (Few-shot Partial Multi-label Learning with Credible Non-candidate Label) to tackle the PML problem with few-shot training samples. Specifically, FsPML-CNL first utilizes the sample features and feature-prototype similarity in the embedding space to disambiguate candidate labels and to obtain label prototypes. Then, the credible non-candidate label is selected based on label correlation and confidence, and its prototype is incorporated into the training samples to generate new data for boosting supervised information. The noise-tolerant multi-label classifier is finally induced with the original and generated samples, along with the confidence-guided loss. Extensive experiments on public datasets demonstrate that FsPML-CNL outperforms competitive baselines across different settings.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.