{"title":"Achieving High Optical Absorption in Thin Film Photovoltaic Devices via Nanopillar Arrays and Metal Nanoparticles","authors":"Turgut Tut","doi":"10.1002/adts.202500702","DOIUrl":null,"url":null,"abstract":"In this study, crystalline silicon nanopillars has been employed as a hexagonal array photonic crystal structure with low optical reflection, augmented by silver metallic nanoparticles ranging from 10 to 50 nm in diameter in order to achieve high absorption in thin silicon films, a critical factor for applications in photovoltaic devices. Initially, it has been begun with an optimized structure in terms of pillar filling ratio, pillar height, and diameter, as established in the previous study. This allows to obtain a hexagonal array of nanopillars with a surface characterized by low optical reflection. To enhance the optical absorption within the bulk of the silicon thin film, the optical scattering properties of silver (Ag) metallic nanoparticles (MNPs) has been harnessed. The integration of silver metal nanoparticles into the photonic crystal hexagonal nanopillar array involved introducing a cavity into the silicon pillar. Placing Ag MNPs near the bottom of the cavity prevented the degradation of the photonic crystal's ability to maintain low reflection within the desired optical spectrum (between 400–1100 nm). Comparison between the nanopillar hexagonal array structure with Ag MNPs and the bare silicon substrate revealed a remarkable 104.76 percent increase in optical absorption for a 1‐micron thick silicon bulk material. This triple hybrid structure exhibits tremendous potential in photovoltaic device applications, including solar cells and photodetectors, with the capacity to significantly enhance conversion efficiency.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"10 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202500702","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, crystalline silicon nanopillars has been employed as a hexagonal array photonic crystal structure with low optical reflection, augmented by silver metallic nanoparticles ranging from 10 to 50 nm in diameter in order to achieve high absorption in thin silicon films, a critical factor for applications in photovoltaic devices. Initially, it has been begun with an optimized structure in terms of pillar filling ratio, pillar height, and diameter, as established in the previous study. This allows to obtain a hexagonal array of nanopillars with a surface characterized by low optical reflection. To enhance the optical absorption within the bulk of the silicon thin film, the optical scattering properties of silver (Ag) metallic nanoparticles (MNPs) has been harnessed. The integration of silver metal nanoparticles into the photonic crystal hexagonal nanopillar array involved introducing a cavity into the silicon pillar. Placing Ag MNPs near the bottom of the cavity prevented the degradation of the photonic crystal's ability to maintain low reflection within the desired optical spectrum (between 400–1100 nm). Comparison between the nanopillar hexagonal array structure with Ag MNPs and the bare silicon substrate revealed a remarkable 104.76 percent increase in optical absorption for a 1‐micron thick silicon bulk material. This triple hybrid structure exhibits tremendous potential in photovoltaic device applications, including solar cells and photodetectors, with the capacity to significantly enhance conversion efficiency.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics