Short-horizon neonatal seizure prediction using EEG-based deep learning.

PLOS digital health Pub Date : 2025-07-11 eCollection Date: 2025-07-01 DOI:10.1371/journal.pdig.0000890
Jonathan Kim, Edilberto Amorim, Vikram R Rao, Hannah C Glass, Danilo Bernardo
{"title":"Short-horizon neonatal seizure prediction using EEG-based deep learning.","authors":"Jonathan Kim, Edilberto Amorim, Vikram R Rao, Hannah C Glass, Danilo Bernardo","doi":"10.1371/journal.pdig.0000890","DOIUrl":null,"url":null,"abstract":"<p><p>Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 7","pages":"e0000890"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12250315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Strategies to predict neonatal seizure risk have typically focused on long-term static predictions with prediction horizons spanning days during the acute postnatal period. Higher temporal resolution or short-horizon neonatal seizure prediction, on the time-frame of minutes, remains unexplored. Here, we investigated quantitative electroencephalography (QEEG) based deep learning (DL) for short-horizon seizure prediction. We used two publicly available EEG seizure datasets with a total of 132 neonates containing a total of 281 hours of EEG data. We benchmarked current state-of-the-art time-series DL methods for seizure prediction, identifying convolutional LSTM (ConvLSTM) as having the strongest performance at preictal state classification. We assessed ConvLSTM performance in a seizure alarm system over varying short-range (1-7 minutes) seizure prediction horizons (SPH) and seizure occurrence periods (SOP) and identified optimal performance at SPH 3 min and SOP 7 min, with AUROC 0.8. At 80% sensitivity, false detection rate was 0.68 events/hour with time-in-warning of 0.36. Model calibration was moderate, with an expected calibration error of 0.106. These findings establish the feasibility of short-horizon neonatal seizure prediction and warrant the need for further validation.

基于脑电图深度学习的短期新生儿癫痫发作预测。
预测新生儿癫痫发作风险的策略通常侧重于长期静态预测,预测范围跨越急性产后几天。更高的时间分辨率或短期新生儿癫痫发作预测,在分钟的时间框架,仍未探索。在此,我们研究了基于深度学习(DL)的定量脑电图(QEEG)用于短期癫痫发作预测。我们使用了两个公开可用的脑电图发作数据集,共有132名新生儿,共包含281小时的脑电图数据。我们将当前最先进的时间序列深度学习方法作为癫痫预测的基准,确定卷积LSTM (ConvLSTM)在预测状态分类方面具有最强的性能。我们在不同的短范围(1-7分钟)癫痫发作预测范围(SPH)和癫痫发作周期(SOP)中评估了ConvLSTM在癫痫发作报警系统中的性能,并确定了SPH 3分钟和SOP 7分钟时的最佳性能,AUROC为0.8。在80%的灵敏度下,误检率为0.68事件/小时,预警时间为0.36。模型校正为中等,预期校正误差为0.106。这些发现建立了短期新生儿癫痫发作预测的可行性,并保证需要进一步验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信