{"title":"Mechanism and dynamics of transient and selective laser processing revealed through high-speed observation combined with precision timing control","authors":"Yusuke Ito, Guoqi Ren, Naohiko Sugita (1)","doi":"10.1016/j.cirp.2025.03.034","DOIUrl":null,"url":null,"abstract":"<div><div>Transient and selective laser (TSL) processing has attracted attention as an ultrafast, high-precision microfabrication method for glass. In TSL processing, the material is locally excited, and the excited region is selectively removed at ultra-high speed. However, its processing mechanism, dynamics, and applicability to other materials remain unclear. In this study, we visualized the processing phenomena using sub-microsecond-scale ultrafast imaging and nanosecond-scale precise timing control. We revealed that the process is triggered by bandgap shrinkage following electron–phonon relaxation. Furthermore, we demonstrated that this method enables the processing of sapphire—a large-bandgap material—at speeds 25,000 times faster than conventional methods.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 269-273"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625000356","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Transient and selective laser (TSL) processing has attracted attention as an ultrafast, high-precision microfabrication method for glass. In TSL processing, the material is locally excited, and the excited region is selectively removed at ultra-high speed. However, its processing mechanism, dynamics, and applicability to other materials remain unclear. In this study, we visualized the processing phenomena using sub-microsecond-scale ultrafast imaging and nanosecond-scale precise timing control. We revealed that the process is triggered by bandgap shrinkage following electron–phonon relaxation. Furthermore, we demonstrated that this method enables the processing of sapphire—a large-bandgap material—at speeds 25,000 times faster than conventional methods.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.