{"title":"Towards understanding the surface strengthening mechanism in negative rake angle cutting of additively manufactured stainless steel","authors":"Tingyue Bai , Chao Wang , Guangyuan Yu , Maxim Kolmanovskyi , Jannis Saelzer , Toru Kizaki (2) , Dirk Biermann (1) , Zhenglong Fang","doi":"10.1016/j.cirp.2025.04.071","DOIUrl":null,"url":null,"abstract":"<div><div>The design of lightweight transmission units highlights the importance of additive manufacturing (AM) techniques in gear production; however, it suffers from a limited understanding of the cutting induced surface enhancement mechanism subjected to inevitable negative rake angle cutting (NRAc). This work applies the NRAc method to process hardened AM-produced 17-4PH stainless steel made with 0°, 67°, and 90° hatching strategies, elucidating subsurface alteration mechanisms in distinct crystallographic textures. In-depth microstructural analysis and machinability evaluation revealed that the compressive stress-induced material removal process promotes a refinement-dominated deformation mode, leading to surface strengthening via grain refinement and martensitic phase transition.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 77-80"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625001180","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The design of lightweight transmission units highlights the importance of additive manufacturing (AM) techniques in gear production; however, it suffers from a limited understanding of the cutting induced surface enhancement mechanism subjected to inevitable negative rake angle cutting (NRAc). This work applies the NRAc method to process hardened AM-produced 17-4PH stainless steel made with 0°, 67°, and 90° hatching strategies, elucidating subsurface alteration mechanisms in distinct crystallographic textures. In-depth microstructural analysis and machinability evaluation revealed that the compressive stress-induced material removal process promotes a refinement-dominated deformation mode, leading to surface strengthening via grain refinement and martensitic phase transition.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.