An LLM-enabled human demonstration-assisted hybrid robot skill synthesis approach for human-robot collaborative assembly

IF 3.6 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL
Yue Yin, Ke Wan, Chengxi Li, Pai Zheng (2)
{"title":"An LLM-enabled human demonstration-assisted hybrid robot skill synthesis approach for human-robot collaborative assembly","authors":"Yue Yin,&nbsp;Ke Wan,&nbsp;Chengxi Li,&nbsp;Pai Zheng (2)","doi":"10.1016/j.cirp.2025.04.015","DOIUrl":null,"url":null,"abstract":"<div><div>Effective human-robot collaborative assembly (HRCA) demands robots with advanced skill learning and communication capabilities. To address this challenge, this paper proposes a large language model (LLM)-enabled, human demonstration-assisted hybrid robot skill synthesis approach, facilitated via a mixed reality (MR) interface. Our key innovation lies in fine-tuning LLMs to directly translate human language instructions into reward functions, which guide a deep reinforcement learning (DRL) module to autonomously generate robot executable actions. Furthermore, human demonstrations are intuitively tracked via MR, enabling a more adaptive and efficient hybrid skill learning. Finally, the effectiveness of the proposed approach has been demonstrated through multiple HRCA tasks.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 1-5"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625000630","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Effective human-robot collaborative assembly (HRCA) demands robots with advanced skill learning and communication capabilities. To address this challenge, this paper proposes a large language model (LLM)-enabled, human demonstration-assisted hybrid robot skill synthesis approach, facilitated via a mixed reality (MR) interface. Our key innovation lies in fine-tuning LLMs to directly translate human language instructions into reward functions, which guide a deep reinforcement learning (DRL) module to autonomously generate robot executable actions. Furthermore, human demonstrations are intuitively tracked via MR, enabling a more adaptive and efficient hybrid skill learning. Finally, the effectiveness of the proposed approach has been demonstrated through multiple HRCA tasks.
一种基于llm的人机协作装配的人演示辅助混合机器人技能综合方法
高效的人机协作装配(HRCA)要求机器人具有先进的技能学习和沟通能力。为了解决这一挑战,本文提出了一种大型语言模型(LLM)支持,人类演示辅助的混合机器人技能综合方法,通过混合现实(MR)接口促进。我们的关键创新在于微调llm,将人类语言指令直接转化为奖励函数,引导深度强化学习(DRL)模块自主生成机器人可执行的动作。此外,通过MR直观地跟踪人类演示,使混合技能学习更具适应性和效率。最后,通过多个HRCA任务验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信