Estimating strong point CO2 emissions by combining spaceborne IPDA lidar and HSRL

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Chonghui Cheng , Dong Liu , Shuaibo Wang , Xingying Zhang , Lu Zhang , Weibiao Chen , Jiqiao Liu , Xueping Wan , Wentai Chen , Xiaolong Chen , Jingxin Zhang , Jiesong Deng , Wentao Xu , Lan Wu , Chong Liu , Zhen Xiang
{"title":"Estimating strong point CO2 emissions by combining spaceborne IPDA lidar and HSRL","authors":"Chonghui Cheng ,&nbsp;Dong Liu ,&nbsp;Shuaibo Wang ,&nbsp;Xingying Zhang ,&nbsp;Lu Zhang ,&nbsp;Weibiao Chen ,&nbsp;Jiqiao Liu ,&nbsp;Xueping Wan ,&nbsp;Wentai Chen ,&nbsp;Xiaolong Chen ,&nbsp;Jingxin Zhang ,&nbsp;Jiesong Deng ,&nbsp;Wentao Xu ,&nbsp;Lan Wu ,&nbsp;Chong Liu ,&nbsp;Zhen Xiang","doi":"10.1016/j.rse.2025.114898","DOIUrl":null,"url":null,"abstract":"<div><div>Anthropogenic CO<sub>2</sub> emissions, particularly from strong point sources like power plants, play a crucial role in the increase of atmospheric CO<sub>2</sub> through a complex interaction with the natural carbon sinks. China successfully launched the Atmospheric Environment Monitoring Satellite (AEMS) loaded with integrated path differential absorption (IPDA) lidar and high-spectral-resolution lidar (HSRL) on April 16, 2022. This satellite is capable of simultaneously detecting atmospheric CO<sub>2</sub> and aerosols. Using AEMS data, we developed a point-source emission retrieval algorithm based on a modified three-dimensional Gaussian plume model and applied it to 12 satellite overpasses of major power plants. Compared with emissions reported by the U.S. Environmental Protection Agency (EPA), our retrievals exhibit an average relative deviation of 6.23 % in the validation cases, which represents a 31.63 % reduction in error compared to the traditional two-dimensional model-based method. In all cases, the estimated emissions exhibit strong agreement with EPA data (<em>R</em> = 0.84) and a low mean absolute error (MAE) of 6.1 kt/day. The analysis indicates that the uncertainty of the emission inversion results ranges from about 12 % to 21 %, with an average of 17.1 %. These results demonstrate the ability of the IPDA–HSRL synergy to accurately quantify point source CO<sub>2</sub> emissions, and can supplement and verify existing bottom-up inventory methods.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"328 ","pages":"Article 114898"},"PeriodicalIF":11.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725003025","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic CO2 emissions, particularly from strong point sources like power plants, play a crucial role in the increase of atmospheric CO2 through a complex interaction with the natural carbon sinks. China successfully launched the Atmospheric Environment Monitoring Satellite (AEMS) loaded with integrated path differential absorption (IPDA) lidar and high-spectral-resolution lidar (HSRL) on April 16, 2022. This satellite is capable of simultaneously detecting atmospheric CO2 and aerosols. Using AEMS data, we developed a point-source emission retrieval algorithm based on a modified three-dimensional Gaussian plume model and applied it to 12 satellite overpasses of major power plants. Compared with emissions reported by the U.S. Environmental Protection Agency (EPA), our retrievals exhibit an average relative deviation of 6.23 % in the validation cases, which represents a 31.63 % reduction in error compared to the traditional two-dimensional model-based method. In all cases, the estimated emissions exhibit strong agreement with EPA data (R = 0.84) and a low mean absolute error (MAE) of 6.1 kt/day. The analysis indicates that the uncertainty of the emission inversion results ranges from about 12 % to 21 %, with an average of 17.1 %. These results demonstrate the ability of the IPDA–HSRL synergy to accurately quantify point source CO2 emissions, and can supplement and verify existing bottom-up inventory methods.

Abstract Image

结合星载IPDA激光雷达和HSRL估算强点CO2排放
人为二氧化碳排放,特别是来自发电厂等强点源的二氧化碳排放,通过与自然碳汇的复杂相互作用,在大气中二氧化碳的增加中起着至关重要的作用。中国于2022年4月16日成功发射搭载集成路径差分吸收(IPDA)激光雷达和高光谱分辨率激光雷达(HSRL)的大气环境监测卫星(AEMS)。这颗卫星能够同时探测大气中的二氧化碳和气溶胶。利用AEMS数据,提出了一种基于改进的三维高斯羽流模型的点源辐射反演算法,并将其应用于12座大型电站卫星立交桥。与美国环境保护署(EPA)报告的排放量相比,我们的检索结果在验证案例中显示出6.23%的平均相对偏差,与传统的基于二维模型的方法相比,误差降低了31.63%。在所有情况下,估计的排放量与EPA数据非常吻合(R = 0.84),平均绝对误差(MAE)较低,为6.1 kt/day。分析表明,发射反演结果的不确定度在12% ~ 21%之间,平均为17.1%。这些结果证明了IPDA-HSRL协同能够准确量化点源CO2排放,并且可以补充和验证现有的自下而上清查方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信