Song Yuan , Chi Fai Cheung (1) , Alborz Shokrani (2) , Zejin Zhan , Chunjin Wang
{"title":"Atomic-level flat polishing of polycrystalline diamond by combining plasma modification and chemical mechanical polishing","authors":"Song Yuan , Chi Fai Cheung (1) , Alborz Shokrani (2) , Zejin Zhan , Chunjin Wang","doi":"10.1016/j.cirp.2025.03.024","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an atomic-level flat polishing method based on hydroxyl (•OH) oxidation combining plasma modification and chemical mechanical polishing (CMP) of polycrystalline diamond (PCD). The PCD surface was firstly modified using •OH generated by He-based H<sub>2</sub>O<sub>2</sub> plasma leading to the formation of an approximately 30 nm thick uniform oxidation layer on the PCD surface composed of carbon-oxygen mixed layer and oxygen-rich layer. Reactive force field molecular dynamics (ReaxFF MD) simulations explained the plasma modification mechanism. The modified layer was then removed using CMP resulting in an atomic-level flat surface with arithmetical mean height (Sa) of 0.366 nm.</div></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"74 1","pages":"Pages 441-445"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850625000241","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an atomic-level flat polishing method based on hydroxyl (•OH) oxidation combining plasma modification and chemical mechanical polishing (CMP) of polycrystalline diamond (PCD). The PCD surface was firstly modified using •OH generated by He-based H2O2 plasma leading to the formation of an approximately 30 nm thick uniform oxidation layer on the PCD surface composed of carbon-oxygen mixed layer and oxygen-rich layer. Reactive force field molecular dynamics (ReaxFF MD) simulations explained the plasma modification mechanism. The modified layer was then removed using CMP resulting in an atomic-level flat surface with arithmetical mean height (Sa) of 0.366 nm.
期刊介绍:
CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems.
This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include:
Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.