AI Predictive Model of Mortality and Intensive Care Unit Admission in the COVID-19 Pandemic: Retrospective Population Cohort Study of 12,000 Patients.

IF 5.8 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Jose Manuel Ruiz Giardin, Óscar Garnica, Nieves Mesa Plaza, Juan Víctor SanMartín López, Ana Farfán Sedano, Elena Madroñal Cerezo, Miguel Ángel Duarte Millán, Aida Izquierdo Martínez, Luis Rivas, Marta Rivilla, Alejandro Morales Ortega, Begoña Frutos Pérez, Cristina De Ancos Aracil, Ruth Calderón, Guillermo Soria Fernandez, Jorge Marrero Francés, David Bernal Bello, Jose Ángel Satué Bartolomé, María Toledano Macías, Sara Piedrabuena García, Marta Guerrero Santillán, Rafael Cristóbal, Belen Mora, Laura Velázquez Ríos, Vanesa García de Viedma, Paula Cuenca Ruiz, Ibone Ayala Larrañaga, Lorena Carpintero, Celia Lara, Alvaro Ricardo Llerena, Virginia García Bermúdez, Gema Delgado Cárdenas, Paloma Pardo Rovira, Elena Tejero Sánchez, Maria Jesús Domínguez García, Carolina Mariño, Cristina Bravo, Ana Ontañon, Mario García, Jose Ignacio Hidalgo Pérez, Santiago Prieto Menchero, Natalia González Pereira, Sonia Gonzalo Pascua, Jorge Tarancón Rey, Luis Antonio Lechuga Suárez
{"title":"AI Predictive Model of Mortality and Intensive Care Unit Admission in the COVID-19 Pandemic: Retrospective Population Cohort Study of 12,000 Patients.","authors":"Jose Manuel Ruiz Giardin, Óscar Garnica, Nieves Mesa Plaza, Juan Víctor SanMartín López, Ana Farfán Sedano, Elena Madroñal Cerezo, Miguel Ángel Duarte Millán, Aida Izquierdo Martínez, Luis Rivas, Marta Rivilla, Alejandro Morales Ortega, Begoña Frutos Pérez, Cristina De Ancos Aracil, Ruth Calderón, Guillermo Soria Fernandez, Jorge Marrero Francés, David Bernal Bello, Jose Ángel Satué Bartolomé, María Toledano Macías, Sara Piedrabuena García, Marta Guerrero Santillán, Rafael Cristóbal, Belen Mora, Laura Velázquez Ríos, Vanesa García de Viedma, Paula Cuenca Ruiz, Ibone Ayala Larrañaga, Lorena Carpintero, Celia Lara, Alvaro Ricardo Llerena, Virginia García Bermúdez, Gema Delgado Cárdenas, Paloma Pardo Rovira, Elena Tejero Sánchez, Maria Jesús Domínguez García, Carolina Mariño, Cristina Bravo, Ana Ontañon, Mario García, Jose Ignacio Hidalgo Pérez, Santiago Prieto Menchero, Natalia González Pereira, Sonia Gonzalo Pascua, Jorge Tarancón Rey, Luis Antonio Lechuga Suárez","doi":"10.2196/70674","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>One of the main challenges with COVID-19 has been that although there are known factors associated with a worse prognosis, clinicians have been unable to predict which patients, with similar risk factors, will die or require intensive care unit (ICU) care.</p><p><strong>Objective: </strong>This study aimed to develop a personalized artificial intelligence model to predict the patient risk of mortality and ICU admission related to SARS-CoV-2 infection during the initial medical evaluation before any kind of treatment.</p><p><strong>Methods: </strong>It is a population-based, observational, retrospective study covering from February 1, 2020, to January 24, 2023, with different circulating SARS-CoV-2 viruses, vaccinated status, and reinfections. It includes patients attended by the reference hospital in Fuenlabrada (Madrid, Spain). The models used the random forest technique, Shapley Additive Explanations method, and processing with Python (version 3.10.0; Python Software Foundation) and scikit-learn (version 1.3.0). The models were applied to different epidemic SARS-CoV-2 infection waves. Data were collected from 11,975 patients (4998 hospitalized and 6737 discharged). Predictive models were built with records from 4758 patients and validated with 6977 patients after evaluation in the emergency department. Variables recorded were age, sex, place of birth, clinical data, laboratory results, vaccination status, and radiologic data at admission.</p><p><strong>Results: </strong>The best mortality predictor achieved an area under the receiver operating characteristic curve (AUC) of 0.92, sensitivity of 0.89, specificity of 0.82, positive predictive value (PPV) of 0.35, and mean negative predictive value (NPV) of 0.98. The ICU admission predictor had an AUC of 0.89, sensitivity of 0.75, specificity of 0.88, PPV of 0.37, and NPV of 0.98. During validation, the mortality model exhibited good performance for the nonhospitalized group, achieving an AUC of 0.95, sensitivity of 0.88, specificity of 0.98, PPV of 0.21, and NPV of 0.99, predicting the death of 30 of 34 patients who were not hospitalized. For the hospitalized patients, the mortality model achieved an AUC of 0.85, sensitivity of 0.86, specificity of 0.74, PPV of 0.24, and NPV of 0.98. The model for predicting ICU admission had an AUC of 0.82, sensitivity of 1.00, specificity of 0.59, PPV of 0.05, and NPV of 1.00. The models' metrics presented stability along all pandemic waves. Key mortality predictors included age, Charlson value, and tachypnea. The worse prognosis was linked to high values in urea, erythrocyte distribution width, oxygen demand, creatinine, procalcitonin, lactate dehydrogenase, heart failure, D-dimer, oncological and hematological diseases, neutrophil, and heart rate. A better prognosis was linked to higher values of lymphocytes and systolic and diastolic blood pressures. Partial or no vaccination provided less protection than full vaccination.</p><p><strong>Conclusions: </strong>The artificial intelligence models demonstrated stability across pandemic waves, indicating their potential to assist in personal health services during the 3-year pandemic, particularly in early preventive and predictive clinical situations.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"27 ","pages":"e70674"},"PeriodicalIF":5.8000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/70674","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: One of the main challenges with COVID-19 has been that although there are known factors associated with a worse prognosis, clinicians have been unable to predict which patients, with similar risk factors, will die or require intensive care unit (ICU) care.

Objective: This study aimed to develop a personalized artificial intelligence model to predict the patient risk of mortality and ICU admission related to SARS-CoV-2 infection during the initial medical evaluation before any kind of treatment.

Methods: It is a population-based, observational, retrospective study covering from February 1, 2020, to January 24, 2023, with different circulating SARS-CoV-2 viruses, vaccinated status, and reinfections. It includes patients attended by the reference hospital in Fuenlabrada (Madrid, Spain). The models used the random forest technique, Shapley Additive Explanations method, and processing with Python (version 3.10.0; Python Software Foundation) and scikit-learn (version 1.3.0). The models were applied to different epidemic SARS-CoV-2 infection waves. Data were collected from 11,975 patients (4998 hospitalized and 6737 discharged). Predictive models were built with records from 4758 patients and validated with 6977 patients after evaluation in the emergency department. Variables recorded were age, sex, place of birth, clinical data, laboratory results, vaccination status, and radiologic data at admission.

Results: The best mortality predictor achieved an area under the receiver operating characteristic curve (AUC) of 0.92, sensitivity of 0.89, specificity of 0.82, positive predictive value (PPV) of 0.35, and mean negative predictive value (NPV) of 0.98. The ICU admission predictor had an AUC of 0.89, sensitivity of 0.75, specificity of 0.88, PPV of 0.37, and NPV of 0.98. During validation, the mortality model exhibited good performance for the nonhospitalized group, achieving an AUC of 0.95, sensitivity of 0.88, specificity of 0.98, PPV of 0.21, and NPV of 0.99, predicting the death of 30 of 34 patients who were not hospitalized. For the hospitalized patients, the mortality model achieved an AUC of 0.85, sensitivity of 0.86, specificity of 0.74, PPV of 0.24, and NPV of 0.98. The model for predicting ICU admission had an AUC of 0.82, sensitivity of 1.00, specificity of 0.59, PPV of 0.05, and NPV of 1.00. The models' metrics presented stability along all pandemic waves. Key mortality predictors included age, Charlson value, and tachypnea. The worse prognosis was linked to high values in urea, erythrocyte distribution width, oxygen demand, creatinine, procalcitonin, lactate dehydrogenase, heart failure, D-dimer, oncological and hematological diseases, neutrophil, and heart rate. A better prognosis was linked to higher values of lymphocytes and systolic and diastolic blood pressures. Partial or no vaccination provided less protection than full vaccination.

Conclusions: The artificial intelligence models demonstrated stability across pandemic waves, indicating their potential to assist in personal health services during the 3-year pandemic, particularly in early preventive and predictive clinical situations.

COVID-19大流行中死亡率和重症监护病房入住的AI预测模型:12,000例患者的回顾性人群队列研究
背景:COVID-19面临的主要挑战之一是,尽管已知有与预后较差相关的因素,但临床医生无法预测哪些具有类似风险因素的患者将死亡或需要重症监护病房(ICU)护理。目的:本研究旨在建立个性化的人工智能模型,在任何治疗前的初步医学评估中预测与SARS-CoV-2感染相关的患者死亡风险和ICU入院风险。方法:基于人群的观察性回顾性研究,研究时间为2020年2月1日至2023年1月24日,研究对象为不同流行的SARS-CoV-2病毒、接种疫苗情况和再感染情况。它包括在富恩拉布拉达(西班牙马德里)的参考医院就诊的病人。模型采用随机森林技术、Shapley Additive explained方法,并使用Python(版本3.10.0;Python Software Foundation)和scikit-learn(版本1.3.0)。该模型应用于不同流行的SARS-CoV-2感染波。数据来自11,975名患者(住院4998名,出院6737名)。预测模型建立在4758例患者的记录上,并在急诊评估后对6977例患者进行了验证。记录的变量包括年龄、性别、出生地点、临床资料、实验室结果、疫苗接种状况和入院时的放射学资料。结果:患者工作特征曲线下面积(AUC)为0.92,敏感性为0.89,特异性为0.82,阳性预测值(PPV)为0.35,平均阴性预测值(NPV)为0.98。AUC为0.89,敏感性为0.75,特异性为0.88,PPV为0.37,NPV为0.98。在验证过程中,死亡率模型在非住院组中表现良好,AUC为0.95,敏感性为0.88,特异性为0.98,PPV为0.21,NPV为0.99,预测了34例非住院患者中30例的死亡。对于住院患者,死亡率模型的AUC为0.85,敏感性为0.86,特异性为0.74,PPV为0.24,NPV为0.98。AUC为0.82,敏感性为1.00,特异性为0.59,PPV为0.05,NPV为1.00。这些模型的指标在所有大流行波中都表现出稳定性。主要的死亡率预测因素包括年龄、Charlson值和呼吸急促。较差的预后与尿素、红细胞分布宽度、需氧量、肌酐、降钙素原、乳酸脱氢酶、心力衰竭、d -二聚体、肿瘤和血液学疾病、中性粒细胞和心率的高值有关。较好的预后与较高的淋巴细胞值和收缩压和舒张压有关。部分或未接种疫苗提供的保护不如完全接种疫苗。结论:人工智能模型在大流行期间表现出稳定性,表明它们有潜力在3年大流行期间协助个人卫生服务,特别是在早期预防和预测临床情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
5.40%
发文量
654
审稿时长
1 months
期刊介绍: The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades. As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor. Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信