Claire Cooper, Daniel Parthier, Jeremie Sibille, John J Tukker, Nicolas Tritsch, Dietmar Schmitz
{"title":"Ultraslow serotonin oscillations in the hippocampus delineate substates across NREM and waking.","authors":"Claire Cooper, Daniel Parthier, Jeremie Sibille, John J Tukker, Nicolas Tritsch, Dietmar Schmitz","doi":"10.7554/eLife.101105","DOIUrl":null,"url":null,"abstract":"<p><p>Beyond the vast array of functional roles attributed to serotonin (5-HT) in the brain, changes in 5-HT levels have been shown to accompany changes in behavioral states, including WAKE, NREM, and REM sleep. Whether 5-HT dynamics at shorter time scales can be seen to delineate substates within these larger brain states remains an open question. Here, we performed simultaneous recordings of extracellular 5-HT using a recently developed G-Protein-Coupled Receptor-Activation-Based 5-HT sensor (GRAB5-HT3.0) and local field potential in the hippocampal CA1 of mice, which revealed the presence of prominent ultraslow (<0.05 Hz) 5-HT oscillations both during NREM and WAKE states. Interestingly, the phase of these ultraslow 5-HT oscillations was found to distinguish substates both within and across larger behavioral states. Hippocampal ripples occurred preferentially on the falling phase of ultraslow 5-HT oscillations during both NREM and WAKE, with higher power ripples concentrating near the peak specifically during NREM. By contrast, hippocampal-cortical coherence was strongest, and microarousals and intracranial EMG peaks were most prevalent during the rising phase in both wake and NREM. Overall, ultraslow 5-HT oscillations delineate substates within the larger behavioral states of NREM and WAKE, thus potentially temporally segregating internal memory consolidation processes from arousal-related functions.</p>","PeriodicalId":11640,"journal":{"name":"eLife","volume":"13 ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12252544/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eLife","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7554/eLife.101105","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Beyond the vast array of functional roles attributed to serotonin (5-HT) in the brain, changes in 5-HT levels have been shown to accompany changes in behavioral states, including WAKE, NREM, and REM sleep. Whether 5-HT dynamics at shorter time scales can be seen to delineate substates within these larger brain states remains an open question. Here, we performed simultaneous recordings of extracellular 5-HT using a recently developed G-Protein-Coupled Receptor-Activation-Based 5-HT sensor (GRAB5-HT3.0) and local field potential in the hippocampal CA1 of mice, which revealed the presence of prominent ultraslow (<0.05 Hz) 5-HT oscillations both during NREM and WAKE states. Interestingly, the phase of these ultraslow 5-HT oscillations was found to distinguish substates both within and across larger behavioral states. Hippocampal ripples occurred preferentially on the falling phase of ultraslow 5-HT oscillations during both NREM and WAKE, with higher power ripples concentrating near the peak specifically during NREM. By contrast, hippocampal-cortical coherence was strongest, and microarousals and intracranial EMG peaks were most prevalent during the rising phase in both wake and NREM. Overall, ultraslow 5-HT oscillations delineate substates within the larger behavioral states of NREM and WAKE, thus potentially temporally segregating internal memory consolidation processes from arousal-related functions.
期刊介绍:
eLife is a distinguished, not-for-profit, peer-reviewed open access scientific journal that specializes in the fields of biomedical and life sciences. eLife is known for its selective publication process, which includes a variety of article types such as:
Research Articles: Detailed reports of original research findings.
Short Reports: Concise presentations of significant findings that do not warrant a full-length research article.
Tools and Resources: Descriptions of new tools, technologies, or resources that facilitate scientific research.
Research Advances: Brief reports on significant scientific advancements that have immediate implications for the field.
Scientific Correspondence: Short communications that comment on or provide additional information related to published articles.
Review Articles: Comprehensive overviews of a specific topic or field within the life sciences.