SingleFrag: a deep learning tool for MS/MS fragment and spectral prediction and metabolite annotation.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Maribel Pérez-Ribera, Muhammad Faizan-Khan, Roger Giné, Josep M Badia, Alexandra Junza, Oscar Yanes, Marta Sales-Pardo, Roger Guimerà
{"title":"SingleFrag: a deep learning tool for MS/MS fragment and spectral prediction and metabolite annotation.","authors":"Maribel Pérez-Ribera, Muhammad Faizan-Khan, Roger Giné, Josep M Badia, Alexandra Junza, Oscar Yanes, Marta Sales-Pardo, Roger Guimerà","doi":"10.1093/bib/bbaf333","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries. To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of concept, we successfully annotate three previously unidentified compounds frequently found in human samples.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 4","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf333","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolite and small molecule identification via tandem mass spectrometry (MS/MS) involves matching experimental spectra with prerecorded spectra of known compounds. This process is hindered by the current lack of comprehensive reference spectral libraries. To address this gap, we need accurate in silico fragmentation tools for predicting MS/MS spectra of compounds for which empirical spectra do not exist. Here, we present SingleFrag, a novel deep learning tool that predicts individual fragments separately, rather than attempting to predict the entire fragmentation spectrum at once. Our results demonstrate that SingleFrag surpasses state-of-the-art in silico fragmentation tools, providing a powerful method for annotating unknown MS/MS spectra of known compounds. As a proof of concept, we successfully annotate three previously unidentified compounds frequently found in human samples.

SingleFrag:用于MS/MS片段和光谱预测以及代谢物注释的深度学习工具。
代谢物和小分子鉴定通过串联质谱(MS/MS)涉及匹配实验光谱与预先记录的已知化合物的光谱。由于目前缺乏全面的参考光谱库,这一过程受到阻碍。为了解决这一差距,我们需要精确的硅碎片化工具来预测不存在经验光谱的化合物的MS/MS光谱。在这里,我们提出了SingleFrag,这是一种新的深度学习工具,它可以单独预测单个碎片,而不是试图一次预测整个碎片谱。我们的研究结果表明,SingleFrag超越了最先进的硅碎片工具,为已知化合物的未知MS/MS谱提供了一种强大的注释方法。作为概念证明,我们成功地注释了三种以前未识别的化合物,这些化合物经常在人类样本中发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信