Leveraging data science to understand and address multimorbidity in sub-Saharan Africa: the MADIVA protocol.

IF 4.4 Q1 HEALTH CARE SCIENCES & SERVICES
Kerry Glover, Tabitha Osler, Kayode Adetunji, Tanya Akumu, Gershim Asiki, Diana Awuor, Palwendé Boua, Victoria Bronstein, Joan Byamugisha, Jacques D Du Toit, Barry Dwolatzky, Jaya George, Paul A Harris, Kobus Herbst, Karen Hofman, Celeste Holden, Samuel Iddi, Damazo T Kadengye, Kathleen Kahn, Michelle Kamp, Nhlamulo Khoza, Faith Kimongo, Isaac Kisiangani, Dekuwin E Kogda, Michael Klipin, Stephen P Levitt, Dylan Maghini, Karabo Maila, Eric Maimela, Daniel Maina Nderitu, Ndivhuwo Makondo, Molulaqhooa Linda Maoyi, Reineilwe Given Mashaba, Nkosinathi Gabriel Masilela, Theophilous Mathema, Phelelani Thokozani Mpangase, Daphine T Nyachowe, Daniel Ohene-Kwofie, Helen Robertson, Skyler Speakman, Evelyn Thsehla, Siphiwe A Thwala, Roy Zent, Francesc Xavier Gómez-Olivé, Chodziwadziwa W Kabudula, Patrick Opiyo Owili, Catherine Kyobutungi, Michèle Ramsay, Stephen Tollman, Scott Hazelhurst
{"title":"Leveraging data science to understand and address multimorbidity in sub-Saharan Africa: the MADIVA protocol.","authors":"Kerry Glover, Tabitha Osler, Kayode Adetunji, Tanya Akumu, Gershim Asiki, Diana Awuor, Palwendé Boua, Victoria Bronstein, Joan Byamugisha, Jacques D Du Toit, Barry Dwolatzky, Jaya George, Paul A Harris, Kobus Herbst, Karen Hofman, Celeste Holden, Samuel Iddi, Damazo T Kadengye, Kathleen Kahn, Michelle Kamp, Nhlamulo Khoza, Faith Kimongo, Isaac Kisiangani, Dekuwin E Kogda, Michael Klipin, Stephen P Levitt, Dylan Maghini, Karabo Maila, Eric Maimela, Daniel Maina Nderitu, Ndivhuwo Makondo, Molulaqhooa Linda Maoyi, Reineilwe Given Mashaba, Nkosinathi Gabriel Masilela, Theophilous Mathema, Phelelani Thokozani Mpangase, Daphine T Nyachowe, Daniel Ohene-Kwofie, Helen Robertson, Skyler Speakman, Evelyn Thsehla, Siphiwe A Thwala, Roy Zent, Francesc Xavier Gómez-Olivé, Chodziwadziwa W Kabudula, Patrick Opiyo Owili, Catherine Kyobutungi, Michèle Ramsay, Stephen Tollman, Scott Hazelhurst","doi":"10.1136/bmjhci-2024-101294","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Multimorbidity (MM), defined as two or more chronic diseases in an individual, is linked to adverse outcomes. MM is increasing in sub-Saharan Africa due to rapidly advancing epidemiological and social transitions. The <i>Multimorbidity in Africa: Digital Innovation, Visualisation and Application</i> Research Hub (MADIVA) aims to address MM by developing data science solutions informed by stakeholder engagement.</p><p><strong>Methods and analysis: </strong>MADIVA uses complex, individual-level datasets from research centres in rural Bushbuckridge, South Africa and urban Nairobi, Kenya. These datasets will be harmonised, linked and curated, and then used to develop MM risk prediction models, novel data science methods and interactive dashboards for research and clinical use. Pilot projects and mentorship programmes will support data science capacity development.</p><p><strong>Ethics and dissemination: </strong>Ethics approval has been granted. Dissemination will occur through scientific meetings and publications. MADIVA is committed to making data FAIR: findable, accessible, interoperable and reusable.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"32 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12258287/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2024-101294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Multimorbidity (MM), defined as two or more chronic diseases in an individual, is linked to adverse outcomes. MM is increasing in sub-Saharan Africa due to rapidly advancing epidemiological and social transitions. The Multimorbidity in Africa: Digital Innovation, Visualisation and Application Research Hub (MADIVA) aims to address MM by developing data science solutions informed by stakeholder engagement.

Methods and analysis: MADIVA uses complex, individual-level datasets from research centres in rural Bushbuckridge, South Africa and urban Nairobi, Kenya. These datasets will be harmonised, linked and curated, and then used to develop MM risk prediction models, novel data science methods and interactive dashboards for research and clinical use. Pilot projects and mentorship programmes will support data science capacity development.

Ethics and dissemination: Ethics approval has been granted. Dissemination will occur through scientific meetings and publications. MADIVA is committed to making data FAIR: findable, accessible, interoperable and reusable.

Abstract Image

Abstract Image

利用数据科学了解和解决撒哈拉以南非洲地区的多重疾病:MADIVA协议。
多病(MM),定义为个体两种或两种以上的慢性疾病,与不良后果有关。在撒哈拉以南非洲,由于流行病学和社会转型的迅速推进,MM正在增加。非洲的多病态:数字创新、可视化和应用研究中心(MADIVA)旨在通过开发利益相关者参与的数据科学解决方案来解决MM问题。方法和分析:MADIVA使用来自南非Bushbuckridge农村地区和肯尼亚内罗毕城市研究中心的复杂的、个人层面的数据集。这些数据集将被协调、关联和管理,然后用于开发MM风险预测模型、新颖的数据科学方法和用于研究和临床使用的交互式仪表板。试点项目和指导计划将支持数据科学能力发展。伦理与传播:已通过伦理审批。将通过科学会议和出版物进行传播。MADIVA致力于使数据公平:可查找、可访问、可互操作和可重用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信