{"title":"Targeting the HNRNPA2B1/HDGF/PTN Axis to Overcome Radioresistance in Non-Small Cell Lung Cancer.","authors":"Fushi Han, Shuzhen Chen, Kangwei Zhang, Kunming Zhang, Meng Wang, Peijun Wang","doi":"10.1089/ars.2024.0808","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Radioresistance in non-small cell lung cancer (NSCLC) presents a major barrier to effective treatment. This study explores the molecular mechanisms underlying this resistance, focusing on the heterogeneous nuclear ribonucleoprotein A2B1/hepatoma-derived growth factor/pleiotrophin (HNRNPA2B1/HDGF/PTN) signaling pathway and its role in autophagy-dependent ferroptosis regulation. Our aim is to uncover how this pathway contributes to tumor cell survival under radiotherapy stress, thereby identifying potential therapeutic targets to overcome radioresistance. <b><i>Results:</i></b> We developed radiotherapy-resistant lung cancer cell lines and assessed their proliferation and migration capabilities through Cell Counting Kit-8 and Transwell assays, respectively. Single-cell RNA sequencing revealed significant differences in gene expression profiles between radioresistance and radiation-sensitive cells. Functional studies, including immunofluorescence, flow cytometry, and biochemical staining, confirmed that radioresistance was associated with enhanced autophagy and altered ferroptosis. Furthermore, HNRNPA2B1 knockdown reduced the expression of Ki67 and proliferating cell nuclear antigen, markers of proliferation, in a mouse tumor model. In addition, modulation of HNRNPA2B1 affected protein interactions and N6-methyladenosine RNA modifications, as demonstrated by reverse transcription-quantitative polymerase chain reaction, Western blot, and methylation RNA immunoprecipitation-quantitative PCR. <b><i>Innovation:</i></b> This study provides new insights into how the HNRNPA2B1/HDGF/PTN pathway promotes radioresistance by influencing autophagy-dependent ferroptosis. This mechanism represents a potential vulnerability that could be therapeutically targeted to improve radiotherapy efficacy in lung cancer. <b><i>Conclusion:</i></b> Our findings demonstrate that the HNRNPA2B1/HDGF/PTN signaling pathway plays a crucial role in sustaining radioresistant phenotypes by modulating autophagy and ferroptosis. Targeting this pathway may enhance the therapeutic response in NSCLC, offering a novel strategy to combat treatment resistance. <i>Antioxid. Redox Signal.</i> 00, 000-000.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2024.0808","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Radioresistance in non-small cell lung cancer (NSCLC) presents a major barrier to effective treatment. This study explores the molecular mechanisms underlying this resistance, focusing on the heterogeneous nuclear ribonucleoprotein A2B1/hepatoma-derived growth factor/pleiotrophin (HNRNPA2B1/HDGF/PTN) signaling pathway and its role in autophagy-dependent ferroptosis regulation. Our aim is to uncover how this pathway contributes to tumor cell survival under radiotherapy stress, thereby identifying potential therapeutic targets to overcome radioresistance. Results: We developed radiotherapy-resistant lung cancer cell lines and assessed their proliferation and migration capabilities through Cell Counting Kit-8 and Transwell assays, respectively. Single-cell RNA sequencing revealed significant differences in gene expression profiles between radioresistance and radiation-sensitive cells. Functional studies, including immunofluorescence, flow cytometry, and biochemical staining, confirmed that radioresistance was associated with enhanced autophagy and altered ferroptosis. Furthermore, HNRNPA2B1 knockdown reduced the expression of Ki67 and proliferating cell nuclear antigen, markers of proliferation, in a mouse tumor model. In addition, modulation of HNRNPA2B1 affected protein interactions and N6-methyladenosine RNA modifications, as demonstrated by reverse transcription-quantitative polymerase chain reaction, Western blot, and methylation RNA immunoprecipitation-quantitative PCR. Innovation: This study provides new insights into how the HNRNPA2B1/HDGF/PTN pathway promotes radioresistance by influencing autophagy-dependent ferroptosis. This mechanism represents a potential vulnerability that could be therapeutically targeted to improve radiotherapy efficacy in lung cancer. Conclusion: Our findings demonstrate that the HNRNPA2B1/HDGF/PTN signaling pathway plays a crucial role in sustaining radioresistant phenotypes by modulating autophagy and ferroptosis. Targeting this pathway may enhance the therapeutic response in NSCLC, offering a novel strategy to combat treatment resistance. Antioxid. Redox Signal. 00, 000-000.
期刊介绍:
Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas.
ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes.
ARS coverage includes:
-ROS/RNS as messengers
-Gaseous signal transducers
-Hypoxia and tissue oxygenation
-microRNA
-Prokaryotic systems
-Lessons from plant biology