Cooperative Photoenzymatic Catalysis for Enantioselective Fluoroalkylation/Cyclization Cascade.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dongshan Wu, Sanshan Wang, Haowen Zhang, Han Ke, Zeying Sun, Shuhan Xie, Yihui Gao, Jun Yang, Bingwu Wang, Xiaoguang Lei
{"title":"Cooperative Photoenzymatic Catalysis for Enantioselective Fluoroalkylation/Cyclization Cascade.","authors":"Dongshan Wu, Sanshan Wang, Haowen Zhang, Han Ke, Zeying Sun, Shuhan Xie, Yihui Gao, Jun Yang, Bingwu Wang, Xiaoguang Lei","doi":"10.1021/jacs.5c05656","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the invaluable properties of organofluorine compounds, incorporating a fluorinated unit has become necessary in pharmaceuticals, agrochemicals, and materials. However, achieving asymmetric fluorination such as trifluoromethylation through chemo- or biocatalysis has been a synthetic challenge. Here, we introduce a unique cooperative photoenzymatic catalysis for the enantioselective fluoroalkylation/cyclization cascade. This method, utilizing the engineered flavin-dependent \"ene\"-reductases (EREDs) and an exogenous photocatalyst (PC), produces a variety of fluorinated cyclic ketones with high yield and enantioselectivity. The discovery of stereocomplementary enzymes that provide access to both enantiomers of the cyclized products further enhances the synthetic applications of our method. The radical-trapping, spectroscopic, and kinetic studies have substantiated the interaction mode between the PC and the enzyme and demonstrated a cascade reaction mechanism involving a unique intermolecular addition of fluorinated radicals and a stereocontrolled intramolecular cyclization. Isotopic labeling experiments support flavin as the source of the hydrogen atom. Molecular dynamics simulations reveal that the binding interaction of the enzyme and the intermediate triggers the photoinduced enantioselective cyclization. This work underscores the potential of enzymes for the asymmetric synthesis of fluorinated compounds.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c05656","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the invaluable properties of organofluorine compounds, incorporating a fluorinated unit has become necessary in pharmaceuticals, agrochemicals, and materials. However, achieving asymmetric fluorination such as trifluoromethylation through chemo- or biocatalysis has been a synthetic challenge. Here, we introduce a unique cooperative photoenzymatic catalysis for the enantioselective fluoroalkylation/cyclization cascade. This method, utilizing the engineered flavin-dependent "ene"-reductases (EREDs) and an exogenous photocatalyst (PC), produces a variety of fluorinated cyclic ketones with high yield and enantioselectivity. The discovery of stereocomplementary enzymes that provide access to both enantiomers of the cyclized products further enhances the synthetic applications of our method. The radical-trapping, spectroscopic, and kinetic studies have substantiated the interaction mode between the PC and the enzyme and demonstrated a cascade reaction mechanism involving a unique intermolecular addition of fluorinated radicals and a stereocontrolled intramolecular cyclization. Isotopic labeling experiments support flavin as the source of the hydrogen atom. Molecular dynamics simulations reveal that the binding interaction of the enzyme and the intermediate triggers the photoinduced enantioselective cyclization. This work underscores the potential of enzymes for the asymmetric synthesis of fluorinated compounds.

对映选择性氟烷基化/环化级联的协同光酶催化。
由于有机氟化合物的宝贵特性,在药品、农用化学品和材料中加入氟化单元已成为必要。然而,通过化学或生物催化实现不对称氟化,如三氟甲基化,一直是一项合成挑战。本文介绍了一种独特的协同光酶催化对映选择性氟烷基化/环化级联反应。该方法利用工程黄素依赖的“烯”还原酶(EREDs)和外源光催化剂(PC),生产出多种高产率和对映选择性高的氟化环酮。立体互补酶的发现提供了两种环化产物的对映体,进一步增强了我们的方法的合成应用。自由基捕获、光谱和动力学研究证实了PC和酶之间的相互作用模式,并证明了一个级联反应机制,包括独特的分子间氟化自由基加成和立体控制的分子内环化。同位素标记实验支持黄素是氢原子的来源。分子动力学模拟表明,酶与中间体的结合相互作用触发了光诱导的对映选择性环化。这项工作强调了酶在不对称合成含氟化合物方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信