Long Wang, Zi'ang Xia, Yao Zhang, Xiaoyu Liu, Chaojie Li, Xue Li, Jiahao Dai, Mingshun Bi, Jingxue Yang, Heng Zhang
{"title":"A Dynamic Iterative Data Cleaning Strategy Based on Model Feedback to Enhance the Prediction Accuracy of Nanocellulose Emulsions","authors":"Long Wang, Zi'ang Xia, Yao Zhang, Xiaoyu Liu, Chaojie Li, Xue Li, Jiahao Dai, Mingshun Bi, Jingxue Yang, Heng Zhang","doi":"10.1002/cem.70046","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The effectiveness of artificial neural networks, which were key technologies in artificial intelligence, greatly depends on the quality of the input data. Data cleaning, a crucial component of data preprocessing, played a vital role in enhancing the accuracy, robustness, and generalization capabilities of neural network models. In this study, a Feedback-Driven Iterative Cleaning (FDIC) framework, guided by model performance, was developed and applied to the study of droplet size prediction models for nanocellulose-stabilized Pickering emulsion systems. After randomly removing between 1% and 40% of the data, an artificial neural network model was established using CNC particle size (X1), CNC concentration (X2), and the oil–water volume ratio of CNC to oil-phase monomer (X3) as input variables, with emulsion droplet size (Y) as the quantitative index. The model's accuracy was evaluated after data removal using the coefficient of determination (R<sup>2</sup>), mean squared error (MSE), and mean absolute scaling error (MASE). The main finding was that targeted removal of a small portion of the data significantly improved the predictive power of the model. Specifically, removing 5% of the dataset results in optimal performance, with <i>R</i><sup><i>2</i></sup> improving from 0.5307 without cleaning to 0.7258, with an MSE of 183.4917, and MASE of 0.4060. This result suggested a significant and quantifiable improvement in the accuracy of the model through our iterative cleaning process. The study revealed a nonlinear relationship between the number of iterations and the model's generalization ability. This finding offered a novel methodological tool for data governance in the smart era and demonstrates significant value in dynamic environments.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70046","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0
Abstract
The effectiveness of artificial neural networks, which were key technologies in artificial intelligence, greatly depends on the quality of the input data. Data cleaning, a crucial component of data preprocessing, played a vital role in enhancing the accuracy, robustness, and generalization capabilities of neural network models. In this study, a Feedback-Driven Iterative Cleaning (FDIC) framework, guided by model performance, was developed and applied to the study of droplet size prediction models for nanocellulose-stabilized Pickering emulsion systems. After randomly removing between 1% and 40% of the data, an artificial neural network model was established using CNC particle size (X1), CNC concentration (X2), and the oil–water volume ratio of CNC to oil-phase monomer (X3) as input variables, with emulsion droplet size (Y) as the quantitative index. The model's accuracy was evaluated after data removal using the coefficient of determination (R2), mean squared error (MSE), and mean absolute scaling error (MASE). The main finding was that targeted removal of a small portion of the data significantly improved the predictive power of the model. Specifically, removing 5% of the dataset results in optimal performance, with R2 improving from 0.5307 without cleaning to 0.7258, with an MSE of 183.4917, and MASE of 0.4060. This result suggested a significant and quantifiable improvement in the accuracy of the model through our iterative cleaning process. The study revealed a nonlinear relationship between the number of iterations and the model's generalization ability. This finding offered a novel methodological tool for data governance in the smart era and demonstrates significant value in dynamic environments.
期刊介绍:
The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.