{"title":"Chemical Synthesis of Crustacean Insulin-Like Peptide Using a Novel Method to Prevent Methionine Oxidation During Solid Phase Peptide Synthesis","authors":"Hidekazu Katayama, Naoaki Tsutsui","doi":"10.1002/psc.70042","DOIUrl":null,"url":null,"abstract":"<p>The oxidation of Met residue(s) in peptides and proteins is sometimes found in solid phase peptide synthesis (SPPS). In this study, in order to develop a method to prevent the oxidation of Met during SPPS, various sulfide compounds were added to the solvent and the oxidation rate was measured. As a result, it was found that tetrahydrothiophene (THT) was most efficient for reducing the extent of Met oxidation. THT tended to prevent the oxidation of Met in a concentration-dependent manner, although the oxidation of Met could not be completely prevented even at a concentration of 20% (v/v). On the other hand, when the SPPS in the presence of THT and then reduction of Met(O) to Met with NH<sub>4</sub>I were performed, the yield was much improved. These results indicate that the combination of preventing oxidation with THT and reducing Met with NH<sub>4</sub>I is effective for the synthesis of peptides containing Met residue(s). Using the method established here, we could synthesize an insulin-like peptide from the kuruma shrimp. This method is likely to be applicable to the synthesis of various Met-containing peptides.</p>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/psc.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70042","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The oxidation of Met residue(s) in peptides and proteins is sometimes found in solid phase peptide synthesis (SPPS). In this study, in order to develop a method to prevent the oxidation of Met during SPPS, various sulfide compounds were added to the solvent and the oxidation rate was measured. As a result, it was found that tetrahydrothiophene (THT) was most efficient for reducing the extent of Met oxidation. THT tended to prevent the oxidation of Met in a concentration-dependent manner, although the oxidation of Met could not be completely prevented even at a concentration of 20% (v/v). On the other hand, when the SPPS in the presence of THT and then reduction of Met(O) to Met with NH4I were performed, the yield was much improved. These results indicate that the combination of preventing oxidation with THT and reducing Met with NH4I is effective for the synthesis of peptides containing Met residue(s). Using the method established here, we could synthesize an insulin-like peptide from the kuruma shrimp. This method is likely to be applicable to the synthesis of various Met-containing peptides.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.