The Classification Limit of Detection: Estimating Sample-Level Classification Uncertainty in Spectroscopy Using Monte Carlo Error Propagation of Spectral Noise

IF 2.3 4区 化学 Q1 SOCIAL WORK
Helder V. Carneiro, Caelin P. Celani, Karl S. Booksh
{"title":"The Classification Limit of Detection: Estimating Sample-Level Classification Uncertainty in Spectroscopy Using Monte Carlo Error Propagation of Spectral Noise","authors":"Helder V. Carneiro,&nbsp;Caelin P. Celani,&nbsp;Karl S. Booksh","doi":"10.1002/cem.70048","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study presents a novel Monte Carlo–based methodology for estimating classification uncertainty in chemometric models by propagating spectral measurement noise. Unlike traditional approaches that treat classification as deterministic, this method simulates realistic noise structures, both independent and correlated, captured from multiple spectrum measurements to quantify sample-specific uncertainty. The technique is applicable to both linear and non-linear models, including partial least squares discriminant analysis (PLS-DA) and various support vector machine (SVM) kernels. The methodology was validated using three datasets: synthetic 2D simulations for controlled model geometry, X-ray fluorescence (XRF) spectra from colored glass rods, and laser-induced breakdown spectroscopy (LIBS) data from <i>Dalbergia</i> wood species. Results revealed that uncertainty increases with spectral similarity and perpendicular alignment between noise structures and decision boundaries. In real-world applications, classification metrics alone proved insufficient to assess model reliability. The inclusion of uncertainty intervals enabled identification of ambiguous predictions even in cases of perfect classification accuracy. This work advances chemometric analysis by linking measurement uncertainty to classification outcomes, offering a robust framework for decision-making in high-stakes analytical contexts.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 7","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70048","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel Monte Carlo–based methodology for estimating classification uncertainty in chemometric models by propagating spectral measurement noise. Unlike traditional approaches that treat classification as deterministic, this method simulates realistic noise structures, both independent and correlated, captured from multiple spectrum measurements to quantify sample-specific uncertainty. The technique is applicable to both linear and non-linear models, including partial least squares discriminant analysis (PLS-DA) and various support vector machine (SVM) kernels. The methodology was validated using three datasets: synthetic 2D simulations for controlled model geometry, X-ray fluorescence (XRF) spectra from colored glass rods, and laser-induced breakdown spectroscopy (LIBS) data from Dalbergia wood species. Results revealed that uncertainty increases with spectral similarity and perpendicular alignment between noise structures and decision boundaries. In real-world applications, classification metrics alone proved insufficient to assess model reliability. The inclusion of uncertainty intervals enabled identification of ambiguous predictions even in cases of perfect classification accuracy. This work advances chemometric analysis by linking measurement uncertainty to classification outcomes, offering a robust framework for decision-making in high-stakes analytical contexts.

检测的分类极限:利用光谱噪声的蒙特卡罗误差传播估计光谱中样本级分类不确定度
本文提出了一种新的基于蒙特卡罗的方法,通过传播光谱测量噪声来估计化学计量模型中的分类不确定性。与将分类视为确定性的传统方法不同,该方法模拟了从多个频谱测量中捕获的独立和相关的现实噪声结构,以量化样品特定的不确定性。该技术适用于线性和非线性模型,包括偏最小二乘判别分析(PLS-DA)和各种支持向量机(SVM)核。该方法使用三个数据集进行验证:控制模型几何形状的合成二维模拟,彩色玻璃棒的x射线荧光(XRF)光谱,以及黄檀木材物种的激光诱导击穿光谱(LIBS)数据。结果表明,不确定性随着谱相似性和噪声结构与决策边界的垂直对齐而增加。在实际应用中,分类度量本身不足以评估模型的可靠性。不确定区间的包含使模糊预测的识别即使在完美的分类精度的情况下。这项工作通过将测量不确定性与分类结果联系起来,推进了化学计量学分析,为高风险分析环境中的决策提供了一个强大的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信