Atmospheric CO2 Ice in the Martian Polar Regions: Physical and Spectral Properties From Mars Climate Sounder Observations

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
R. W. Stevens, P. O. Hayne, A. Kleinböhl, D. M. Kass
{"title":"Atmospheric CO2 Ice in the Martian Polar Regions: Physical and Spectral Properties From Mars Climate Sounder Observations","authors":"R. W. Stevens,&nbsp;P. O. Hayne,&nbsp;A. Kleinböhl,&nbsp;D. M. Kass","doi":"10.1029/2025JE008956","DOIUrl":null,"url":null,"abstract":"<p><span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> ice clouds are important for polar energy balance and the carbon dioxide cycle on Mars. However, uncertainties remain regarding their physical and radiative properties, which control how polar <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> clouds interact with the global Martian climate. Here, we use Mars Climate Sounder (MCS) observations of atmospheric radiance to estimate these physical and radiative properties. We find that Martian <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> clouds are typically composed of large particles from a narrow size distribution with an effective radius of 46 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m and an effective variance of <span></span><math>\n <semantics>\n <mrow>\n <mn>2.0</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $2.0\\times 1{0}^{-3}$</annotation>\n </semantics></math> in the southern hemisphere, and an effective radius of 42 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m and an effective variance of <span></span><math>\n <semantics>\n <mrow>\n <mn>2.0</mn>\n <mo>×</mo>\n <mn>1</mn>\n <msup>\n <mn>0</mn>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> $2.0\\times 1{0}^{-3}$</annotation>\n </semantics></math> in the north. The similarity in sizes of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> ice particles in both hemispheres may be due to the fact that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> clouds tend to form near the same pressure level in each hemisphere, despite the higher surface pressures in the north. We use a simplified convective cooling model to show that the small effective variance we derive may be a consequence of the fact that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> is also the dominant atmospheric constituent on Mars, which allows <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> ice particles to reach sizes upwards of 10 <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n </mrow>\n <annotation> ${\\upmu }$</annotation>\n </semantics></math>m within seconds. At the same time, the fact that the Martian atmosphere is so thin means that large particles fall rapidly to the surface, reducing the range of particle sizes that can remain in the atmosphere for any extended period of time. This study is part of ongoing work to add <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> ice opacity profiles to the MCS retrieval pipeline.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025JE008956","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JE008956","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

CO 2 ${\text{CO}}_{2}$ ice clouds are important for polar energy balance and the carbon dioxide cycle on Mars. However, uncertainties remain regarding their physical and radiative properties, which control how polar CO 2 ${\text{CO}}_{2}$ clouds interact with the global Martian climate. Here, we use Mars Climate Sounder (MCS) observations of atmospheric radiance to estimate these physical and radiative properties. We find that Martian CO 2 ${\text{CO}}_{2}$ clouds are typically composed of large particles from a narrow size distribution with an effective radius of 46 μ ${\upmu }$ m and an effective variance of 2.0 × 1 0 3 $2.0\times 1{0}^{-3}$ in the southern hemisphere, and an effective radius of 42 μ ${\upmu }$ m and an effective variance of 2.0 × 1 0 3 $2.0\times 1{0}^{-3}$ in the north. The similarity in sizes of CO 2 ${\text{CO}}_{2}$ ice particles in both hemispheres may be due to the fact that CO 2 ${\text{CO}}_{2}$ clouds tend to form near the same pressure level in each hemisphere, despite the higher surface pressures in the north. We use a simplified convective cooling model to show that the small effective variance we derive may be a consequence of the fact that CO 2 ${\text{CO}}_{2}$ is also the dominant atmospheric constituent on Mars, which allows CO 2 ${\text{CO}}_{2}$ ice particles to reach sizes upwards of 10 μ ${\upmu }$ m within seconds. At the same time, the fact that the Martian atmosphere is so thin means that large particles fall rapidly to the surface, reducing the range of particle sizes that can remain in the atmosphere for any extended period of time. This study is part of ongoing work to add CO 2 ${\text{CO}}_{2}$ ice opacity profiles to the MCS retrieval pipeline.

Abstract Image

火星极地大气CO2冰:来自火星气候探测器观测的物理和光谱特性
冰云对火星上的极地能量平衡和二氧化碳循环很重要。然而,它们的物理和辐射特性仍然存在不确定性,这些特性控制着极地二氧化碳云如何与火星全球气候相互作用。在这里,我们使用火星气候探测仪(MCS)的大气辐射观测来估计这些物理和辐射特性。我们发现火星上的CO 2 ${\text{CO}}_{2}$云通常由来自窄尺寸分布的大颗粒组成,有效半径为46 μ ${\upmu}$ m,有效方差为2.0\乘以1{0}^{-3}$在南半球;有效半径为42 μ ${\upmu}$ m,有效方差为2.0 × 10−3 $2.0\倍1{0}^{-3}$在北方。两个半球的co2冰粒子在大小上的相似性可能是由于易于形成co2云的事实尽管北半球的地面气压较高,但两个半球的气压水平几乎相同。我们使用一个简化的对流冷却模型来表明,我们得出的小有效方差可能是由于二氧化碳也是火星上主要的大气成分,这使得co2 ${\text{CO}}_{2}$冰粒在几秒钟内达到10 μ ${\upmu}$ m以上的大小。与此同时,火星大气如此稀薄的事实意味着大颗粒会迅速降落到火星表面,从而减少了可以在大气层中停留很长时间的颗粒大小的范围。本研究是正在进行的将CO 2 ${\text{CO}}_{2}$冰不透明度剖面添加到MCS检索管道的工作的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信