Bayesian spatiotemporal stochastic partial differential equation for high-resolution earthquake magnitude mapping: Application to Sumatra Island, Indonesia

IF 1.9 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-07-05 DOI:10.1016/j.mex.2025.103487
Dila Fitriani Azuri , I Gede Nyoman Mindra Jaya , Yudi Rosandi
{"title":"Bayesian spatiotemporal stochastic partial differential equation for high-resolution earthquake magnitude mapping: Application to Sumatra Island, Indonesia","authors":"Dila Fitriani Azuri ,&nbsp;I Gede Nyoman Mindra Jaya ,&nbsp;Yudi Rosandi","doi":"10.1016/j.mex.2025.103487","DOIUrl":null,"url":null,"abstract":"<div><div>Indonesia’s location at the convergence of the Eurasian, Indo-Australian, and Pacific plates makes it highly susceptible to earthquakes, particularly along the megathrust zone in Sumatra. Given the potential for severe damage and loss of life, spatiotemporal modeling of earthquake risk is crucial, especially in areas without recorded seismic events. One of the key preventive strategies is the development of an Early Warning System, which can help predict potential earthquakes based on seismic activity in specific locations. However, not all areas have recorded earthquake events, making it necessary to estimate seismic activity in unmeasured regions using spatial interpolation technique. This study applies the Stochastic Partial Differential Equation (SPDE) approach to estimate earthquake magnitude potential in unmeasured regions. The SPDE method transforms a continuous Gaussian Field (GF) into a computationally efficient Gaussian Markov Random Field (GMRF) by discretizing the spatial domain using triangulation. This approach overcomes the computational burden of the ‘big n problem’ in traditional GF models. By applying SPDE with a 10 km spatial range and 0.1 standard deviation, we produce high-resolution maps that support the development of early warning systems and inform seismic risk mitigation strategies.</div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"15 ","pages":"Article 103487"},"PeriodicalIF":1.9000,"publicationDate":"2025-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125003322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Indonesia’s location at the convergence of the Eurasian, Indo-Australian, and Pacific plates makes it highly susceptible to earthquakes, particularly along the megathrust zone in Sumatra. Given the potential for severe damage and loss of life, spatiotemporal modeling of earthquake risk is crucial, especially in areas without recorded seismic events. One of the key preventive strategies is the development of an Early Warning System, which can help predict potential earthquakes based on seismic activity in specific locations. However, not all areas have recorded earthquake events, making it necessary to estimate seismic activity in unmeasured regions using spatial interpolation technique. This study applies the Stochastic Partial Differential Equation (SPDE) approach to estimate earthquake magnitude potential in unmeasured regions. The SPDE method transforms a continuous Gaussian Field (GF) into a computationally efficient Gaussian Markov Random Field (GMRF) by discretizing the spatial domain using triangulation. This approach overcomes the computational burden of the ‘big n problem’ in traditional GF models. By applying SPDE with a 10 km spatial range and 0.1 standard deviation, we produce high-resolution maps that support the development of early warning systems and inform seismic risk mitigation strategies.
高分辨率地震震级测绘的贝叶斯时空随机偏微分方程:在印尼苏门答腊岛的应用
印度尼西亚位于欧亚板块、印度-澳大利亚板块和太平洋板块的交汇处,这使得它极易受到地震的影响,特别是在苏门答腊岛的巨型逆冲带。考虑到潜在的严重破坏和生命损失,地震风险的时空建模至关重要,特别是在没有记录地震事件的地区。关键的预防策略之一是发展早期预警系统,它可以根据特定地点的地震活动来帮助预测潜在的地震。然而,并非所有地区都有地震记录,因此有必要利用空间插值技术估计未测量地区的地震活动。本研究应用随机偏微分方程(SPDE)方法估计未测地区的地震震级潜力。SPDE方法通过三角剖分将连续高斯场(GF)离散化为计算效率高的高斯马尔可夫随机场(GMRF)。这种方法克服了传统GF模型中“大n问题”的计算负担。通过应用10公里空间范围和0.1标准偏差的SPDE,我们生成了高分辨率地图,支持早期预警系统的开发,并为地震风险缓解策略提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信