A lightweight remote sensing image detection model with feature aggregation diffusion network

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-07-11 DOI:10.1016/j.array.2025.100459
Xiaohui Cheng , Xukun Wang , Yun Deng , Qiu Lu , Yanping Kang , Jian Tang , Yuanyuan Shi , Junyu Zhao
{"title":"A lightweight remote sensing image detection model with feature aggregation diffusion network","authors":"Xiaohui Cheng ,&nbsp;Xukun Wang ,&nbsp;Yun Deng ,&nbsp;Qiu Lu ,&nbsp;Yanping Kang ,&nbsp;Jian Tang ,&nbsp;Yuanyuan Shi ,&nbsp;Junyu Zhao","doi":"10.1016/j.array.2025.100459","DOIUrl":null,"url":null,"abstract":"<div><div>With accelerating land-use changes driven by urbanization and resource extraction, accurate detection of landscape objects in remote sensing imagery has become pivotal for sustainable land management. However, existing deep learning models often face challenges in balancing detection accuracy and computational efficiency, especially for small objects in complex scenes. To address this, we propose LightFAD-YOLO, a lightweight model integrating feature aggregation diffusion for multi-scale context propagation, enhancing small object detection in complex scenes. The central convolutional detection head combines detail-enhanced convolution and group normalization, reducing computational costs by 23.4 % while maintaining precision. A dilation-wise residual module further optimizes multi-scale feature extraction. Evaluated on benchmark datasets, LightFAD-YOLO achieves 1.7 % higher <span><math><mrow><msub><mrow><mi>m</mi><mi>A</mi><mi>P</mi></mrow><mn>0.5</mn></msub></mrow></math></span> and 6.4 % improved <span><math><mrow><msub><mrow><mi>m</mi><mi>A</mi><mi>P</mi></mrow><mrow><mn>0.5</mn><mo>:</mo><mn>0.95</mn></mrow></msub></mrow></math></span> over baseline models, with 9.9 % lower computational load. Operating at 297.2 FPS with only 2.3M parameters, it enables real-time deployment on edge devices for land-use monitoring and infrastructure detection, supporting sustainable land management.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100459"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625000864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

With accelerating land-use changes driven by urbanization and resource extraction, accurate detection of landscape objects in remote sensing imagery has become pivotal for sustainable land management. However, existing deep learning models often face challenges in balancing detection accuracy and computational efficiency, especially for small objects in complex scenes. To address this, we propose LightFAD-YOLO, a lightweight model integrating feature aggregation diffusion for multi-scale context propagation, enhancing small object detection in complex scenes. The central convolutional detection head combines detail-enhanced convolution and group normalization, reducing computational costs by 23.4 % while maintaining precision. A dilation-wise residual module further optimizes multi-scale feature extraction. Evaluated on benchmark datasets, LightFAD-YOLO achieves 1.7 % higher mAP0.5 and 6.4 % improved mAP0.5:0.95 over baseline models, with 9.9 % lower computational load. Operating at 297.2 FPS with only 2.3M parameters, it enables real-time deployment on edge devices for land-use monitoring and infrastructure detection, supporting sustainable land management.
基于特征聚集扩散网络的轻型遥感图像检测模型
随着城市化和资源开采推动土地利用变化的加速,遥感影像中景观物的准确检测已成为土地可持续管理的关键。然而,现有的深度学习模型往往面临平衡检测精度和计算效率的挑战,特别是对于复杂场景中的小物体。为了解决这个问题,我们提出了LightFAD-YOLO,这是一个轻量级模型,集成了多尺度上下文传播的特征聚集扩散,增强了复杂场景中的小目标检测。中央卷积检测头结合了细节增强卷积和组归一化,在保持精度的同时减少了23.4%的计算成本。扩展残差模块进一步优化了多尺度特征提取。在基准数据集上进行评估后,LightFAD-YOLO的mAP0.5提高了1.7%,mAP0.5:0.95提高了6.4%,计算负荷降低了9.9%。它以297.2 FPS的速度运行,只有2.3M个参数,可以实时部署在边缘设备上,用于土地利用监测和基础设施检测,支持可持续的土地管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信