{"title":"Momentum-based accelerated algorithm for distributed optimization under sector-bound nonlinearity","authors":"Mohammadreza Doostmohammadian , Hamid R. Rabiee","doi":"10.1016/j.jfranklin.2025.107857","DOIUrl":null,"url":null,"abstract":"<div><div>Distributed optimization advances centralized machine learning methods by enabling parallel and decentralized learning processes over a network of computing nodes. This work provides an accelerated consensus-based distributed algorithm for locally non-convex optimization using the gradient-tracking technique. The proposed algorithm (i) improves the convergence rate by adding momentum towards the optimal state using the heavy-ball method, while (ii) addressing general sector-bound nonlinearities over the information-sharing network. The link nonlinearity includes any sign-preserving odd sector-bound mapping, for example, log-scale data quantization or clipping in practical applications. For admissible momentum and gradient-tracking parameters, using perturbation theory and eigen-spectrum analysis, we prove convergence even in the presence of sector-bound nonlinearity and for locally non-convex cost functions. Further, in contrast to most existing weight-stochastic algorithms, we adopt weight-balanced (WB) network design. This WB design and perturbation-based analysis allow to handle <em>dynamic</em> directed network of agents to address possible time-varying setups due to link failures or packet drops.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 12","pages":"Article 107857"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225003503","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Distributed optimization advances centralized machine learning methods by enabling parallel and decentralized learning processes over a network of computing nodes. This work provides an accelerated consensus-based distributed algorithm for locally non-convex optimization using the gradient-tracking technique. The proposed algorithm (i) improves the convergence rate by adding momentum towards the optimal state using the heavy-ball method, while (ii) addressing general sector-bound nonlinearities over the information-sharing network. The link nonlinearity includes any sign-preserving odd sector-bound mapping, for example, log-scale data quantization or clipping in practical applications. For admissible momentum and gradient-tracking parameters, using perturbation theory and eigen-spectrum analysis, we prove convergence even in the presence of sector-bound nonlinearity and for locally non-convex cost functions. Further, in contrast to most existing weight-stochastic algorithms, we adopt weight-balanced (WB) network design. This WB design and perturbation-based analysis allow to handle dynamic directed network of agents to address possible time-varying setups due to link failures or packet drops.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.