Investigating the electronic properties and quantum capacitance of transition metal sulfides MS2 (M = Ti, Mo, W, V, Nb, Ta, Fe, Cu, Co): A DFT study for high-performance supercapacitors

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sharmila Sherin, Ripunjay Rai, Mangal S. Yadav, A.L. Sharma
{"title":"Investigating the electronic properties and quantum capacitance of transition metal sulfides MS2 (M = Ti, Mo, W, V, Nb, Ta, Fe, Cu, Co): A DFT study for high-performance supercapacitors","authors":"Sharmila Sherin,&nbsp;Ripunjay Rai,&nbsp;Mangal S. Yadav,&nbsp;A.L. Sharma","doi":"10.1016/j.matchemphys.2025.131251","DOIUrl":null,"url":null,"abstract":"<div><div>Developing high-performance supercapacitors necessitates exploring advanced electrode materials with rapid charge-discharge kinetics, high power density, and long-term electrochemical stability. This study employs DFT to unravel the electronic properties, quantum capacitance (C<sub>Q</sub>), surface charge density(σ), and thermodynamical stability of nine transition metal disulfides (MS<sub>2</sub>: M = Ti, Mo, W, V, Nb, Ta, Fe, Cu, and Co), highlighting their potential as advanced supercapacitor electrodes. Computational analyses reveal significant contrasts in performance, with layered TiS<sub>2</sub>, TaS<sub>2</sub>, and MoS<sub>2</sub> exhibiting high C<sub>Q</sub> values of 1313.41 μF cm<sup>−2</sup>, 1111.29 μF cm<sup>−2</sup>, and 943.75 μF cm<sup>−2</sup>, respectively. Remarkably, non-layered FeS<sub>2</sub> exhibits a competitive C<sub>Q</sub> value of 923.73 μF cm<sup>−2</sup> while ranking as the thermodynamically most stable compound. σ analysis further revealed TiS<sub>2</sub> (710.84 μC cm<sup>−2</sup>) and FeS<sub>2</sub> (653.14 μC cm<sup>−2</sup>) as top performers, confirming their suitability as anode materials. In contrast, CuS<sub>2</sub> and CoS<sub>2</sub> have low C<sub>Q</sub>, underscoring their limited utility. The findings guide electrode material selection and encourage experimental and engineering strategies, such as heterostructure and defect modulation, to fully unlock these systems' potential. A strong correlation between DFT-predicted and experimental capacitance values validates the computational framework, confirming its reliability for guiding future electrode material design.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"345 ","pages":"Article 131251"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425008971","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance supercapacitors necessitates exploring advanced electrode materials with rapid charge-discharge kinetics, high power density, and long-term electrochemical stability. This study employs DFT to unravel the electronic properties, quantum capacitance (CQ), surface charge density(σ), and thermodynamical stability of nine transition metal disulfides (MS2: M = Ti, Mo, W, V, Nb, Ta, Fe, Cu, and Co), highlighting their potential as advanced supercapacitor electrodes. Computational analyses reveal significant contrasts in performance, with layered TiS2, TaS2, and MoS2 exhibiting high CQ values of 1313.41 μF cm−2, 1111.29 μF cm−2, and 943.75 μF cm−2, respectively. Remarkably, non-layered FeS2 exhibits a competitive CQ value of 923.73 μF cm−2 while ranking as the thermodynamically most stable compound. σ analysis further revealed TiS2 (710.84 μC cm−2) and FeS2 (653.14 μC cm−2) as top performers, confirming their suitability as anode materials. In contrast, CuS2 and CoS2 have low CQ, underscoring their limited utility. The findings guide electrode material selection and encourage experimental and engineering strategies, such as heterostructure and defect modulation, to fully unlock these systems' potential. A strong correlation between DFT-predicted and experimental capacitance values validates the computational framework, confirming its reliability for guiding future electrode material design.

Abstract Image

研究过渡金属硫化物MS2 (M = Ti, Mo, W, V, Nb, Ta, Fe, Cu, Co)的电子特性和量子电容:高性能超级电容器的DFT研究
开发高性能超级电容器需要探索具有快速充放电动力学、高功率密度和长期电化学稳定性的先进电极材料。本研究利用DFT揭示了九种过渡金属二硫化物(MS2: M = Ti, Mo, W, V, Nb, Ta, Fe, Cu和Co)的电子特性,量子电容(CQ),表面电荷密度(σ)和热力学稳定性,突出了它们作为先进超级电容器电极的潜力。计算分析表明,层状的TiS2、TaS2和MoS2的CQ值分别为1313.41 μF cm−2、1111.29 μF cm−2和943.75 μF cm−2。值得注意的是,非层状FeS2具有923.73 μF cm−2的竞争CQ值,是热力学最稳定的化合物。σ分析结果表明,TiS2 (710.84 μC cm−2)和FeS2 (653.14 μC cm−2)表现最佳,适合作为阳极材料。相比之下,CuS2和CoS2的CQ较低,强调了它们的有限效用。这些发现指导了电极材料的选择,并鼓励实验和工程策略,如异质结构和缺陷调制,以充分释放这些系统的潜力。dft预测值与实验电容值之间的强相关性验证了计算框架,证实了其指导未来电极材料设计的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信