A DFT study of ZnO/XN(X = Al, Ga) vdW heterostructure practiced as an encouraging photocatalyst for water splitting

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL
Guan Yongxin , Liu Zhongfang , Chen Yao , Li Huizhan , Wang Hong
{"title":"A DFT study of ZnO/XN(X = Al, Ga) vdW heterostructure practiced as an encouraging photocatalyst for water splitting","authors":"Guan Yongxin ,&nbsp;Liu Zhongfang ,&nbsp;Chen Yao ,&nbsp;Li Huizhan ,&nbsp;Wang Hong","doi":"10.1016/j.cplett.2025.142283","DOIUrl":null,"url":null,"abstract":"<div><div>The electronic structure and photocatalytic properties of ZnO/XN(X = Al, Ga) vdW heterostructure were investigated based on a first-principles approach. The results show that the ZnO/XN(X = Al, Ga) vdW heterostructure is a semiconducting material with band gap values of 2.018 eV and 1.762 eV, which exhibits a staggered band structure with a built-in electric field pointing from ZnO to XN(X = Al, Ga) at the heterojunction interface. The band-edge position spans the redox potential of water, and compared with the monolayer, the ZnO/XN(X = Al, Ga) vdW heterostructure light absorption spectrum is red-shifted, showing a wider light absorption range (from visible to ultraviolet) and stronger light absorption intensity (up to the order of 10<sup>4</sup> cm<sup>−1</sup>). In addition, the band gap of ZnO/XN(X = Al, Ga) vdW can be effectively tuned by applying biaxial strain. The results indicate that the ZnO/XN(X = Al, Ga) vdW heterostructure has the potential to be a new type of efficient photolysis water catalyst.</div></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":"877 ","pages":"Article 142283"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261425004233","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The electronic structure and photocatalytic properties of ZnO/XN(X = Al, Ga) vdW heterostructure were investigated based on a first-principles approach. The results show that the ZnO/XN(X = Al, Ga) vdW heterostructure is a semiconducting material with band gap values of 2.018 eV and 1.762 eV, which exhibits a staggered band structure with a built-in electric field pointing from ZnO to XN(X = Al, Ga) at the heterojunction interface. The band-edge position spans the redox potential of water, and compared with the monolayer, the ZnO/XN(X = Al, Ga) vdW heterostructure light absorption spectrum is red-shifted, showing a wider light absorption range (from visible to ultraviolet) and stronger light absorption intensity (up to the order of 104 cm−1). In addition, the band gap of ZnO/XN(X = Al, Ga) vdW can be effectively tuned by applying biaxial strain. The results indicate that the ZnO/XN(X = Al, Ga) vdW heterostructure has the potential to be a new type of efficient photolysis water catalyst.

Abstract Image

ZnO/XN(X = Al, Ga) vdW异质结构作为催化水分解的光催化剂的DFT研究
基于第一性原理研究了ZnO/XN(X = Al, Ga) vdW异质结构的电子结构和光催化性能。结果表明:ZnO/XN(X = Al, Ga) vdW异质结构是一种带隙值分别为2.018 eV和1.762 eV的半导体材料,其异质结界面处具有从ZnO指向XN(X = Al, Ga)的内置电场,呈交错带结构。带边位置跨越了水的氧化还原电位,与单层相比,ZnO/XN(X = Al, Ga) vdW异质结构光吸收光谱发生了红移,表现出更宽的光吸收范围(从可见光到紫外线)和更强的光吸收强度(可达104 cm−1数量级)。另外,通过施加双轴应变可以有效地调节ZnO/XN(X = Al, Ga) vdW的带隙。结果表明,ZnO/XN(X = Al, Ga) vdW异质结构具有成为新型高效光解水催化剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信