Continuous-flow electron spin resonance microfluidics device with sub-nanoliter sample volume

IF 2.624
Oleg Zgadzai , Nir Almog , Yefim Varshavsky , Moamen Jbara , Benoit Driesschaert , Aharon Blank
{"title":"Continuous-flow electron spin resonance microfluidics device with sub-nanoliter sample volume","authors":"Oleg Zgadzai ,&nbsp;Nir Almog ,&nbsp;Yefim Varshavsky ,&nbsp;Moamen Jbara ,&nbsp;Benoit Driesschaert ,&nbsp;Aharon Blank","doi":"10.1016/j.jmro.2025.100207","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel continuous-flow electron spin resonance (ESR) microfluidic device designed for both continuous-wave (CW) and pulsed ESR measurements on sub-nanoliter liquid samples. The system integrates a planar surface microresonator (ParPar type) operating at ∼9.4 GHz with a precision-fabricated quartz microfluidic chip, enabling spatial confinement of the sample within the resonator’s microwave magnetic field hotspot while minimizing dielectric losses. The effective sample volume is ∼0.06 nL, and the device supports standard microfluidic connectors, facilitating both continuous and stopped-flow experiments. Using a 1 mM aqueous solution of deuterated Finland trityl (dFT) radical, CW ESR measurements yielded a peak signal-to-noise ratio (SNR) of ∼83 for a 100-point spectrum acquired over 80 s, with a resonator quality factor of Q ∼15–20. This corresponds to a spin sensitivity of ∼1.04 × 10<sup>9</sup> spins/√Hz/G. Pulsed ESR measurements, performed with 0.1 W microwave power and 10 ns π pulses, achieved an SNR of ∼47 with 1 s of averaging, corresponding to a spin sensitivity of ∼7.8 × 10<sup>8</sup> spins/√Hz. A Rabi frequency of ∼50 MHz was measured, indicating a microwave conversion efficiency of ∼56 G/√W. Both the pulsed spin sensitivity and Rabi frequency are consistent with simulated values. This device represents a significant step toward ESR-based detection of individual, slowly flowing cells—analogous to flow cytometry but with magnetic resonance contrast. With future enhancements such as higher operating frequencies, cryogenic integration, or optimized resonator geometries, the system is expected to enable practical ESR measurements at the single-cell level.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"24 ","pages":"Article 100207"},"PeriodicalIF":2.6240,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441025000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel continuous-flow electron spin resonance (ESR) microfluidic device designed for both continuous-wave (CW) and pulsed ESR measurements on sub-nanoliter liquid samples. The system integrates a planar surface microresonator (ParPar type) operating at ∼9.4 GHz with a precision-fabricated quartz microfluidic chip, enabling spatial confinement of the sample within the resonator’s microwave magnetic field hotspot while minimizing dielectric losses. The effective sample volume is ∼0.06 nL, and the device supports standard microfluidic connectors, facilitating both continuous and stopped-flow experiments. Using a 1 mM aqueous solution of deuterated Finland trityl (dFT) radical, CW ESR measurements yielded a peak signal-to-noise ratio (SNR) of ∼83 for a 100-point spectrum acquired over 80 s, with a resonator quality factor of Q ∼15–20. This corresponds to a spin sensitivity of ∼1.04 × 109 spins/√Hz/G. Pulsed ESR measurements, performed with 0.1 W microwave power and 10 ns π pulses, achieved an SNR of ∼47 with 1 s of averaging, corresponding to a spin sensitivity of ∼7.8 × 108 spins/√Hz. A Rabi frequency of ∼50 MHz was measured, indicating a microwave conversion efficiency of ∼56 G/√W. Both the pulsed spin sensitivity and Rabi frequency are consistent with simulated values. This device represents a significant step toward ESR-based detection of individual, slowly flowing cells—analogous to flow cytometry but with magnetic resonance contrast. With future enhancements such as higher operating frequencies, cryogenic integration, or optimized resonator geometries, the system is expected to enable practical ESR measurements at the single-cell level.

Abstract Image

亚纳升样品体积的连续流电子自旋共振微流体装置
本文提出了一种新型的连续流电子自旋共振(ESR)微流控装置,用于亚纳升液体样品的连续波(CW)和脉冲ESR测量。该系统集成了一个工作频率为~ 9.4 GHz的平面表面微谐振器(ParPar型)和一个精密制造的石英微流控芯片,使样品在谐振器的微波磁场热点内的空间限制成为可能,同时最大限度地减少介电损耗。有效样品体积为~ 0.06 nL,该设备支持标准微流体连接器,便于连续和停流实验。使用1 mM氘化芬兰三烷基(dFT)自由基水溶液,连续波ESR测量在80秒内获得的100点光谱的峰值信噪比(SNR)为~ 83,谐振器质量因子为Q ~ 15-20。这相当于自旋灵敏度为~ 1.04 × 109个自旋/√Hz/G。在0.1 W微波功率和10 ns π脉冲下进行的脉冲ESR测量中,SNR达到了~ 47,平均时间为1 s,对应于自旋灵敏度为~ 7.8 × 108自旋/√Hz。测量到的Rabi频率为~ 50 MHz,表明微波转换效率为~ 56 G/√W。脉冲自旋灵敏度和拉比频率与模拟值基本一致。该设备代表了基于esr的个体缓慢流动细胞检测的重要一步-类似于流式细胞术,但具有磁共振对比。随着未来的改进,如更高的工作频率、低温集成或优化的谐振器几何形状,该系统有望实现单细胞水平的实际ESR测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信